Physics
Physics
3rd Edition
ISBN: 9780073512150
Author: Alan Giambattista, Betty Richardson, Robert C. Richardson Dr.
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 3, Problem 69P

(a)

To determine

The time taken for the stone to reach the base of the gorge.

(a)

Expert Solution
Check Mark

Answer to Problem 69P

The time taken for the stone to reach the base of the gorge is 3.49s .

Explanation of Solution

Write the equation for the time taken for the stone to reach the base of the gorge.

t=2sg (I)

Here, t is the time taken for the stone to reach the base of the gorge, s is the height of the gorge and g is the acceleration due to gravity.

Conclusion:

Substitute 60.0m for s and 9.83m/s2 for g in equation (I) to find t.

t=2(60.0m)9.83m/s2=120.0m9.83m/s2=3.49s

Thus, the time taken for the stone to reach the base of the gorge is 3.49s .

(b)

To determine

The time taken for the stone to reach the ground if it is thrown straight down.

(b)

Expert Solution
Check Mark

Answer to Problem 69P

The time taken for the stone to reach the ground if it is thrown straight down is 2.01s.

Explanation of Solution

Write the equation for the vertical distance.

y=ut+12gt212gt2+uty=0 (II)

Here, t is the time taken for the stone to reach the ground, y is the vertical distance, u is the initial velocity and g is the acceleration due to gravity.

Conclusion:

Substitute 20.0m/s for u, 60.0m for y and 9.83m/s2 for g in equation (I) to obtain a quadratic equation.

12(9.83m/s2)t2+(20.0m/s)t60.0m=0

The value of t can be found by solving the above quadratic equation.

t=b±b24ac2a

Substitute 20.0m/s for b, 1/2 for a, and 60.0m for c and solve.

t=(20.0m/s)±(20.0m/s)24(12)(9.83m/s2)(60.0m)2(12)(9.83m/s2)=2.01s or6.08s

As the time must be positive, the time taken for the stone to reach the ground if it is thrown straight down is 2.01s.

(c)

To determine

The distance below the bridge the stone will hit the ground.

(c)

Expert Solution
Check Mark

Answer to Problem 69P

The distance below the bridge the stone will hit the ground is 80.6m.

Explanation of Solution

Sketch the figure showing the components of velocities.

Physics, Chapter 3, Problem 69P

Figure 1

Write the equation for the vertical distance.

y=(usinθ)t+12gt212gt2+(usinθ)ty=0 (III)

Here, t is the time taken for the stone to reach the ground, y is the vertical distance, u is the initial velocity, θ is the projection angle and g is the acceleration due to gravity.

Write the equation for the horizontal distance.

x=(ucosθ)t (IV)

Conclusion:

Substitute 20.0m/s for u, 60.0m for y, 30.0° for θ and 9.83m/s2 for g in equation (I) to obtain a quadratic equation.

12(9.83m/s2)t2(20.0m/s)sin30.0°t60.0m=0

Find the value of t by solving the quadratic equation.

t=b±b24ac2a

Substitute (20.0m/s)sin30.0 for b, 12(9.83m/s2) for a, and 60.0m for c and solve.

t=b±b24ac2a=(20.0m/s)sin30.0°±(20.0m/s)2sin230.0°4(12)(9.83m/s2)(60.0m)2(12)(9.83m/s2)=4.66s or2.62s

As the time must be positive, the time taken is 4.66s.

Substitute 20.0m/s for u, 30.0s for θ and 4.66s for t in equation (IV) to find x.

x=(20.0m/s)cos30.0°(4.66s)=80.6m

Therefore, the distance below the bridge the stone will hit the ground is 80.6m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NC
1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?
1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39

Chapter 3 Solutions

Physics

Ch. 3.5 - Prob. 3.6PPCh. 3.5 - Prob. 3.5ACPCh. 3.5 - Prob. 3.7PPCh. 3.5 - Prob. 3.5BCPCh. 3.5 - Prob. 3.8PPCh. 3.6 - Prob. 3.6CPCh. 3.6 - Prob. 3.9PPCh. 3.6 - Prob. 3.10PPCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Prob. 16CQCh. 3 - Prob. 17CQCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - Prob. 3MCQCh. 3 - 4. A runner moves along a circular track at a...Ch. 3 - Prob. 5MCQCh. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Prob. 8MCQCh. 3 - Prob. 9MCQCh. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - Prob. 12MCQCh. 3 - Prob. 13MCQCh. 3 - Prob. 14MCQCh. 3 - Prob. 15MCQCh. 3 - Prob. 16MCQCh. 3 - Prob. 17MCQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - 12. Michaela is planning a trip in Ireland from...Ch. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - 75. A Nile cruise ship takes 20.8 h to go upstream...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - 111. A ball is thrown horizontally off the edge of...Ch. 3 - 112. A marble is rolled so that it is projected...Ch. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY