
EBK LIFE IN THE UNIVERSE
4th Edition
ISBN: 9780134080321
Author: SHOSTAK
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 61IF
To determine
Evaluate the time taken by the spacecraft to reach on the Alpha Centauri.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the amplitude, wavelength, period, and the speed of the wave.
A long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains
6500 turns per meter of length. Determine the emf induced in the solenoid when the
current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s.
Number
Units
A coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.
Chapter 3 Solutions
EBK LIFE IN THE UNIVERSE
Ch. 3 - List three major ideas of astronomy that help...Ch. 3 - Briefly define and describe each of the various...Ch. 3 - Describe the solar system as it looks on the...Ch. 3 - Prob. 4RQCh. 3 - Prob. 5RQCh. 3 - Prob. 6RQCh. 3 - Prob. 7RQCh. 3 - What do we mean when we say that Earth and life...Ch. 3 - Imagine describing the cosmic calendar to a...Ch. 3 - Prob. 10RQ
Ch. 3 - Prob. 11RQCh. 3 - Prob. 12RQCh. 3 - What is the difference between matter in the...Ch. 3 - Define and give examples of kinetic energy,...Ch. 3 - Prob. 15RQCh. 3 - Prob. 16RQCh. 3 - Briefly describe the four major features of our...Ch. 3 - Briefly describe the nebular theory and how it...Ch. 3 - What was the close encounter hypothesis for our...Ch. 3 - How have recent discoveries led scientists to...Ch. 3 - Prob. 21TYUCh. 3 - At a middle school talent show, 14-year-old Sam...Ch. 3 - SETI researchers announced today that if they...Ch. 3 - A noted physicist today announced that he has...Ch. 3 - Prob. 25TYUCh. 3 - Astronomers have discovered a galaxy in the far...Ch. 3 - Inventor John Johnson has patented a device that...Ch. 3 - Prob. 28TYUCh. 3 - Prob. 29TYUCh. 3 - Using new, powerful telescopes, biologists today...Ch. 3 - Prob. 31TYUCh. 3 - Prob. 32TYUCh. 3 - A television advertisement claiming that a product...Ch. 3 - When we say the universe is expanding, we mean...Ch. 3 - Prob. 35TYUCh. 3 - The age of our solar system is about (a) one-third...Ch. 3 - Prob. 37TYUCh. 3 - How many of the planets orbit the Sun in the same...Ch. 3 - Prob. 39TYUCh. 3 - Prob. 40TYUCh. 3 - Explaining the Past. Is it really possible for...Ch. 3 - A Strange Star System. Suppose that we discovered...Ch. 3 - Prob. 44IFCh. 3 - Alien Technology. Some people believe that Earth...Ch. 3 - Atomic Terminology Practice. a. The most common...Ch. 3 - Prob. 49IFCh. 3 - Prob. 50IFCh. 3 - Patterns of Motion. In one or two paragraphs,...Ch. 3 - Two Kinds of Planets. The jovian planets differ...Ch. 3 - Pluto and Eris. How does the nebular theory...Ch. 3 - Rocks from Other Solar Systems. Many leftovers...Ch. 3 - Prob. 55IFCh. 3 - Prob. 56IFCh. 3 - Scale of the Solar System. The real diameters of...Ch. 3 - Prob. 58IFCh. 3 - Prob. 59IFCh. 3 - Prob. 60IFCh. 3 - Prob. 61IFCh. 3 - Prob. 62IFCh. 3 - Prob. 63IFCh. 3 - Prob. 67WPCh. 3 - Tour of the Solar System. Visit one of the many...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forwardA camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forwardGiven two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward
- (a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forwardIn a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x marrow_forwardDon't use ai to answer I will report you answerarrow_forward
- A shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forwardAn amoeba is 0.309 cm away from the 0.304 cm focal length objective lens of a microscope.arrow_forwardTwo resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10Is. Let r be the ratio R1/R2. Find r. I know you have to find the equations for V for both situations and relate them, I'm just struggling to do so. Please explain all steps, thank you.arrow_forward
- Bheem and Ram, jump off either side of a bridge while holding opposite ends of a rope and swing back and forth under the bridge to save a child while avoiding a fire. Looking at the swing of just Bheem, we can approximate him as a simple pendulum with a period of motion of 5.59 s. How long is the pendulum ? When Bheem swings, he goes a full distance, from side to side, of 10.2 m. What is his maximum velocity? What is his maximum acceleration?arrow_forwardThe position of a 0.300 kg object attached to a spring is described by x=0.271 m ⋅ cos(0.512π⋅rad/s ⋅t) (Assume t is in seconds.) Find the amplitude of the motion. Find the spring constant. Find the position of the object at t = 0.324 s. Find the object's velocity at t = 0.324 s.arrow_forwardMin Min is hanging from her spring-arms off the edge of the level. Due to the spring like nature of her arms she is bouncing up and down in simple harmonic motion with a maximum displacement from equilibrium of 0.118 m. The spring constant of Min-Min’s arms is 9560. N/m and she has a mass of 87.5 kg. What is the period at which she oscillates? Find her maximum speed. Find her speed when she is located 5.00 cm from her equilibrium position.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning


Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
