
Calculus with Applications Plus MyLab Math with Pearson eText -- Access Card Package (11th Edition) (Lial, Greenwell & Ritchey, The Applied Calculus & Finite Math Series)
11th Edition
ISBN: 9780133886832
Author: Margaret L. Lial, Raymond N. Greenwell, Nathan P. Ritchey
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 5RE
To determine
Whether the statement “A polynomial function is continuous everywhere” is true or false and explain the reason.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 3 Solutions
Calculus with Applications Plus MyLab Math with Pearson eText -- Access Card Package (11th Edition) (Lial, Greenwell & Ritchey, The Applied Calculus & Finite Math Series)
Ch. 3.1 - YOUR TURN 1 Find .
Ch. 3.1 - YOUR TURN 2 Find .
Ch. 3.1 - Prob. 3YTCh. 3.1 - YOUR TURN 4 Find .
Ch. 3.1 - YOUR TURN 5 Find .
Ch. 3.1 - YOUR TURN 6 Find .
Ch. 3.1 - Prob. 7YTCh. 3.1 - Prob. 8YTCh. 3.1 - Prob. 1WECh. 3.1 - Prob. 2WE
Ch. 3.1 - Prob. 3WECh. 3.1 - Prob. 4WECh. 3.1 - In Exercises 1-4, choose the best answer for each...Ch. 3.1 - In Exercises 1-4, choose the best answer for each...Ch. 3.1 - Prob. 3ECh. 3.1 - Prob. 4ECh. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Prob. 7ECh. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Prob. 9ECh. 3.1 - Prob. 10ECh. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Prob. 12ECh. 3.1 - Prob. 13ECh. 3.1 - 14. In Exercise 10, why does , even though f(1) =...Ch. 3.1 - Prob. 15ECh. 3.1 - Prob. 16ECh. 3.1 - Prob. 17ECh. 3.1 - Complete the tables and use the results to find...Ch. 3.1 - Complete the tables and use the results to find...Ch. 3.1 - Complete the tables and use the results to find...Ch. 3.1 - Prob. 21ECh. 3.1 - Let and . Use the limit rules to find each...Ch. 3.1 - Prob. 23ECh. 3.1 - Prob. 24ECh. 3.1 - Prob. 25ECh. 3.1 - Let and . Use the limit rules to find each...Ch. 3.1 - Prob. 27ECh. 3.1 - Prob. 28ECh. 3.1 - Prob. 29ECh. 3.1 - Prob. 30ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 33ECh. 3.1 - Prob. 34ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 36ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 39ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 41ECh. 3.1 - Prob. 42ECh. 3.1 - Prob. 43ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 45ECh. 3.1 - Prob. 46ECh. 3.1 - Prob. 47ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 49ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 51ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 53ECh. 3.1 - Prob. 54ECh. 3.1 - Prob. 55ECh. 3.1 - 56. Let
Find
Find
Ch. 3.1 - 57. Does a value of k exist such that the...Ch. 3.1 - 58. Repeat the instructions of Exercise 57 for the...Ch. 3.1 - Prob. 59ECh. 3.1 - Prob. 60ECh. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Prob. 63ECh. 3.1 - Prob. 64ECh. 3.1 - Prob. 65ECh. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prob. 69ECh. 3.1 - Prob. 70ECh. 3.1 - Prob. 71ECh. 3.1 - Prob. 72ECh. 3.1 - Prob. 73ECh. 3.1 - Find each of the following limits (a) by...Ch. 3.1 - Prob. 75ECh. 3.1 - Prob. 76ECh. 3.1 - Prob. 77ECh. 3.1 - Prob. 78ECh. 3.1 - Prob. 79ECh. 3.1 - Prob. 80ECh. 3.1 - Prob. 81ECh. 3.1 - Prob. 82ECh. 3.1 - Prob. 83ECh. 3.1 - 84. APPLY IT Consumer Demand When the price of an...Ch. 3.1 - 85. Sales Tax Officials in California tend to...Ch. 3.1 - Prob. 86ECh. 3.1 - 87. Average Cost The cost (in dollars) for...Ch. 3.1 - Prob. 88ECh. 3.1 - Prob. 89ECh. 3.1 - 90. Preferred Stock In business finance, an...Ch. 3.1 - Prob. 91ECh. 3.1 - Prob. 92ECh. 3.1 - 93. Sediment To develop strategies to manage water...Ch. 3.1 - Prob. 94ECh. 3.1 - Prob. 95ECh. 3.2 - YOUR TURN 1 Find all values x = a where the...Ch. 3.2 - YOUR TURN 2 Find all values of x where the...Ch. 3.2 - Find each of the following limits.
W1.
Ch. 3.2 - Prob. 2WECh. 3.2 - Prob. 3WECh. 3.2 - Prob. 4WECh. 3.2 - Prob. 5WECh. 3.2 - In Exercises 1–6, find all values x = a where the...Ch. 3.2 - In Exercises 1–6, find all values x = a where the...Ch. 3.2 - Prob. 3ECh. 3.2 - Prob. 4ECh. 3.2 - In Exercises 1–6, find all values x = a where the...Ch. 3.2 - Prob. 6ECh. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Prob. 11ECh. 3.2 - Prob. 12ECh. 3.2 - Prob. 13ECh. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Prob. 19ECh. 3.2 - In Exercises 19–24, (a) graph the given function,...Ch. 3.2 - In Exercises 19–24, (a) graph the given function,...Ch. 3.2 - In Exercises 19–24, (a) graph the given function,...Ch. 3.2 - Prob. 23ECh. 3.2 - Prob. 24ECh. 3.2 - Prob. 25ECh. 3.2 - In Exercises 25–28, find the value of the constant...Ch. 3.2 - In Exercises 25–28, find the value of the constant...Ch. 3.2 - In Exercises 25–28, find the value of the constant...Ch. 3.2 - Prob. 29ECh. 3.2 - Prob. 30ECh. 3.2 - Prob. 31ECh. 3.2 - Prob. 32ECh. 3.2 - Prob. 33ECh. 3.2 - Prob. 34ECh. 3.2 - 35. Production The graph shows the profit from the...Ch. 3.2 - 36. Cost Analysis The cost to transport a mobile...Ch. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Prob. 39ECh. 3.2 - Prob. 40ECh. 3.2 - Prob. 41ECh. 3.3 - YOUR TURN 1 The projected U.S. Asian population...Ch. 3.3 - Prob. 2YTCh. 3.3 - Prob. 3YTCh. 3.3 - Prob. 4YTCh. 3.3 - Prob. 5YTCh. 3.3 - Prob. 1WECh. 3.3 - Prob. 2WECh. 3.3 - Prob. 3WECh. 3.3 - Prob. 4WECh. 3.3 - Prob. 1ECh. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Prob. 3ECh. 3.3 - Prob. 4ECh. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Prob. 8ECh. 3.3 - Prob. 9ECh. 3.3 - Prob. 10ECh. 3.3 - Prob. 11ECh. 3.3 - Prob. 12ECh. 3.3 - Prob. 13ECh. 3.3 - Prob. 14ECh. 3.3 - Find the instantaneous rate of change for each...Ch. 3.3 - Find the instantaneous rate of change for each...Ch. 3.3 - Prob. 17ECh. 3.3 - Find the instantaneous rate of change for each...Ch. 3.3 - Prob. 19ECh. 3.3 - Prob. 20ECh. 3.3 - Prob. 21ECh. 3.3 - Prob. 22ECh. 3.3 - Prob. 23ECh. 3.3 - Prob. 24ECh. 3.3 - Prob. 25ECh. 3.3 - 26. Revenue The revenue (in thousands of dollars)...Ch. 3.3 - Prob. 27ECh. 3.3 - 28. Interest If $1000 is invested in an account...Ch. 3.3 - Prob. 29ECh. 3.3 - Prob. 30ECh. 3.3 - Prob. 31ECh. 3.3 - Prob. 32ECh. 3.3 - Prob. 33ECh. 3.3 - Prob. 34ECh. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3.3 - Prob. 39ECh. 3.3 - Prob. 40ECh. 3.3 - Prob. 41ECh. 3.3 - Prob. 42ECh. 3.3 - Prob. 43ECh. 3.3 - Prob. 44ECh. 3.4 - YOUR TURN 1 For the graph of f(x) = x2 − x, (a)...Ch. 3.4 - Prob. 2YTCh. 3.4 - Prob. 3YTCh. 3.4 - Prob. 4YTCh. 3.4 - Prob. 5YTCh. 3.4 - Prob. 6YTCh. 3.4 - Prob. 7YTCh. 3.4 - Find for each of the following...Ch. 3.4 - Prob. 2WECh. 3.4 - Prob. 3WECh. 3.4 - Prob. 4WECh. 3.4 - 1. By considering, but not calculating, the slope...Ch. 3.4 - Prob. 2ECh. 3.4 - Prob. 3ECh. 3.4 - Prob. 4ECh. 3.4 - Prob. 5ECh. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Estimate the slope of the tangent line to each...Ch. 3.4 - Prob. 9ECh. 3.4 - Prob. 10ECh. 3.4 - Prob. 11ECh. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Prob. 19ECh. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Prob. 21ECh. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - Prob. 27ECh. 3.4 - Prob. 28ECh. 3.4 - Prob. 29ECh. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Find the x-values where the following do not have...Ch. 3.4 - Find the x-values where the following do not have...Ch. 3.4 - Prob. 37ECh. 3.4 - Find the x-values where the following do not have...Ch. 3.4 - Prob. 39ECh. 3.4 - In Exercises 40 and 41, tell which graph, (a) or...Ch. 3.4 - Prob. 41ECh. 3.4 - Prob. 42ECh. 3.4 - Prob. 43ECh. 3.4 - Prob. 44ECh. 3.4 - Prob. 45ECh. 3.4 - Prob. 46ECh. 3.4 - Prob. 47ECh. 3.4 - Prob. 48ECh. 3.4 - 49. Demand Suppose the demand for a certain item...Ch. 3.4 - Prob. 50ECh. 3.4 - Prob. 51ECh. 3.4 - 52. Cost The cost in dollars of producing x tacos...Ch. 3.4 - Prob. 54ECh. 3.4 - Prob. 55ECh. 3.4 - Prob. 56ECh. 3.4 - Prob. 57ECh. 3.4 - Prob. 58ECh. 3.4 - Prob. 59ECh. 3.4 - Prob. 60ECh. 3.4 - Prob. 61ECh. 3.5 - YOUR TURN 1 Sketch the graph of the derivative of...Ch. 3.5 - Prob. 2YTCh. 3.5 - Prob. 1WECh. 3.5 - Prob. 2WECh. 3.5 - Prob. 1ECh. 3.5 - Prob. 2ECh. 3.5 - Prob. 3ECh. 3.5 - Prob. 4ECh. 3.5 - Prob. 5ECh. 3.5 - Prob. 6ECh. 3.5 - Prob. 7ECh. 3.5 - Sketch the graph of the derivative for each...Ch. 3.5 - Sketch the graph of the derivative for each...Ch. 3.5 - Prob. 10ECh. 3.5 - Prob. 11ECh. 3.5 - Sketch the graph of the derivative for each...Ch. 3.5 - Prob. 13ECh. 3.5 - Prob. 14ECh. 3.5 - Prob. 15ECh. 3.5 - Prob. 16ECh. 3.5 - Business and Economics
17. Consumer Demand When...Ch. 3.5 - Prob. 18ECh. 3.5 - Prob. 19ECh. 3.5 - 20. Flight Speed The graph below shows the...Ch. 3.5 - Prob. 21ECh. 3.5 - 22. Weight Gain The graph below shows the typical...Ch. 3.5 - Prob. 23ECh. 3.5 - Prob. 24ECh. 3 - Prob. 1RECh. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - Determine whether each of the following statements...Ch. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - Prob. 10RECh. 3 - Prob. 11RECh. 3 - Prob. 12RECh. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RECh. 3 - Prob. 23RECh. 3 - Prob. 24RECh. 3 - Prob. 25RECh. 3 - Prob. 26RECh. 3 - Prob. 27RECh. 3 - Prob. 28RECh. 3 - Prob. 29RECh. 3 - Prob. 30RECh. 3 - Prob. 31RECh. 3 - Prob. 32RECh. 3 - Prob. 33RECh. 3 - Prob. 34RECh. 3 - Prob. 35RECh. 3 - Prob. 36RECh. 3 - Prob. 37RECh. 3 - Prob. 38RECh. 3 - Prob. 39RECh. 3 - Prob. 40RECh. 3 - Prob. 41RECh. 3 - Prob. 42RECh. 3 - Prob. 43RECh. 3 - Prob. 44RECh. 3 - Prob. 45RECh. 3 - Prob. 46RECh. 3 - Prob. 47RECh. 3 - Prob. 48RECh. 3 - Prob. 49RECh. 3 - Prob. 50RECh. 3 - Prob. 51RECh. 3 - Prob. 52RECh. 3 - Prob. 53RECh. 3 - Prob. 54RECh. 3 - Prob. 55RECh. 3 - Prob. 56RECh. 3 - Prob. 57RECh. 3 - Prob. 58RECh. 3 - Prob. 59RECh. 3 - Prob. 60RECh. 3 - Prob. 61RECh. 3 - Prob. 62RECh. 3 - Prob. 63RECh. 3 - Prob. 64RECh. 3 - Prob. 65RECh. 3 - Prob. 66RECh. 3 - Prob. 67RECh. 3 - Prob. 68RECh. 3 - Prob. 69RECh. 3 - Prob. 70RECh. 3 - Prob. 71RECh. 3 - Prob. 72RECh. 3 - Prob. 73RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY