The number of moles of compound is given. By using the number of moles, the mass of phosphorous in each compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 atoms. Hence, ( 6 .022 × 10 23 atoms ) ( 12 u 1 atom ) = 12 g ⇒ 1 u = 1 6 .022 × 10 23 g To determine : The mass of phosphorous ( P ) in 5 .00 moles of P 4 O 6 .
The number of moles of compound is given. By using the number of moles, the mass of phosphorous in each compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 atoms. Hence, ( 6 .022 × 10 23 atoms ) ( 12 u 1 atom ) = 12 g ⇒ 1 u = 1 6 .022 × 10 23 g To determine : The mass of phosphorous ( P ) in 5 .00 moles of P 4 O 6 .
Solution Summary: The author explains that the number of moles of a compound is given. The molar mass of any compound can be calculated by adding the atomic weight of individual atoms.
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
Chapter 3, Problem 58E
(a)
Interpretation Introduction
Interpretation: The number of moles of compound is given. By using the number of moles, the mass of phosphorous in each compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 atoms.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The mass of phosphorous
(P) in
5.00 moles of
P4O6.
(b)
Interpretation Introduction
Interpretation: The number of moles of compound is given. By using the number of moles, the mass of phosphorous in each compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 atoms.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
(c)
Interpretation Introduction
Interpretation: The number of moles of compound is given. By using the number of moles, the mass of phosphorous in each compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 atoms.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The mass of phosphorous
(P) in
5.00 moles of
Na2HPO4.
You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products:
xi
1. ☑
2. H₂O
хе
i
Draw the missing reagent X you think will make this synthesis work in the drawing area below.
If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank.
Click and drag to start drawing a
structure.
There is no reagent that will make this synthesis work without complications.
: ☐
S
☐
Predict the major products of this organic reaction:
H
OH
1. LiAlH4
2. H₂O
?
Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry.
Click and drag to start drawing a
structure.
G
C
टे
For each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box.
Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below.
Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first
stable product you expect to form in solution.
NH2
CI
MgCl
?
Will the first product that forms in this reaction
create a new CC bond?
Yes
No
MgBr
?
Will the first product that forms in this reaction
create a new CC bond?
Yes
No
G
टे
Chapter 3 Solutions
OWLv2 with MindTap Reader, 4 terms (24 months) Printed Access Card for Zumdahl/Zumdahl's Chemistry, 9th