(a)
The average velocity of the car in the whole trip.
(a)
Answer to Problem 47P
The average velocity of the car in the whole trip is
Explanation of Solution
Given that the radius of the circular path is
The vector diagram indicating the initial velocity
The
Write the expression for the displacement vector of the car.
Here,
The initial position vector of the car is
Write the expression for the magnitude of the displacement vector.
Here,
The average velocity will be in the same direction of the displacement vector.
Write the expression for the angle
Write the expression for the magnitude of the average velocity.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Combine the magnitude and direction of the average velocity vector.
Therefore, the average velocity of the car in the whole trip is
(b)
The average acceleration of the car in the whole trip.
(b)
Answer to Problem 47P
The average acceleration of the car in the whole trip is
Explanation of Solution
It is obtained that the average velocity of the car in the whole trip is
Write the expression for the average acceleration.
Here,
Since the car covers three quarters of the circle, the distance travelled is obtained as,
Here,
The initial velocity is directed west and the final velocity is directed south. The expression for the initial and final velocity is obtained as,
Use the expression for
Use equation (VI) in (VII).
Write the expression for the magnitude of average acceleration.
Here,
Conclusion:
From equation (VIII) it is clear that the average acceleration vector has
Substitute
Write the expression for the angle
Substitute
Substitute
Combine the magnitude and direction of the average acceleration vector.
Therefore, the average acceleration of the car in the whole trip is
(c)
The reason for which a car moving at constant speed in a circular path has a nonzero average acceleration.
(c)
Answer to Problem 47P
The change in direction of velocity requires an acceleration, which leads to the presence of a nonzero acceleration to a car moving in a circular path with constant speed.
Explanation of Solution
The direction of instantaneous velocity of the car moving in a circular path, changes in each instant. The direction of velocity at a point on the circular path will be along the tangent drawn at each of those points. Even though the magnitude of velocity (which is the speed) of motion is constant, due to the direction change of the velocity vector, the car gains an acceleration.
Therefore, the change in direction of velocity requires an acceleration, which leads to the presence of a nonzero acceleration to a car moving in a circular path with constant speed.
Want to see more full solutions like this?
Chapter 3 Solutions
Physics
- Can you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- No chatgpt pls will upvotearrow_forwardThe shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forward
- The particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON