Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
12th Edition
ISBN: 9781259587399
Author: Eugene Hecht
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 42SP

Two forces act on a point object as follows: 100 N at 170.0 ° and 100 N at 50.0 ° .

Find their resultant.

Expert Solution & Answer
Check Mark
To determine

The resultant force due to the two forcesacting on an object, which are as follows: 100 N at 170° and 100 N at 50°.

Answer to Problem 42SP

Solution:

100 N, 110°

Explanation of Solution

Given data:

Two forcesacting on a point are as follows:

100 N at 170°

100 N at 50°

Formula used:

The resultant R has two components, which are Fx and Fy, and the expression of the magnitude of the resultant is

R=(Fx)2+(Fy)2

Here, Fx the force in the x-directionand Fy is the force in the y-direction.

The expression for the direction of the resultant force is

tanθ=FyFxθ=tan1(FyFx)

Here, θ is the direction of the resultant forces.

Explanation:

Draw the schematic diagram of the problem:

Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines), Chapter 3, Problem 42SP , additional homework tip  1

Find the x- and y-components of each force. These components are as follow:

Force x-component y-component
100 N (100 N)cos50°=64.27 N (100 N)sin50°=76.60 N
100 N (100 N)cos170°=98.48 N (100 N)sin170°=17.36 N
Sum Fx=34.21 N Fy=93.96 N

Recall the expression of the magnitude of the resultant:

R=(Fx)2+(Fy)2

Substitute 300 N for Fx and 400 N for Fy

R=(34.21 N)2+(93.96 N)2=(1170.32 N)+(8828.48 N)100 N

Draw a schematic diagram for the resultant of both forces.

Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines), Chapter 3, Problem 42SP , additional homework tip  2

In the above diagram, θ is the direction of the resultant force from the negative x-axis.

Recall the expression of the angle:

tanθ=FyFx

Rearrange for θ

θ=tan1(FyFx)

Substitute 93.96 N for Fy and 34.35 N for Fx

θ=tan1(93.96 N34.21 N)=tan1(2.736)70°

This is the angle of the resultant with the negative x-axis. Therefore, the angle of the resultant with the positive x-axis should be 18070=110.

Conclusion:

The magnitude of the resultant is 100 N and the angle is 110°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping. ° = A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom. horizontal force magnitude 342. N direction towards the wall ✓ vertical force 1330 N up magnitude direction (b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground? 0.26 × You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axis

Chapter 3 Solutions

Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)

Ch. 3 - 3.52 [I] A force acts on a 2-kg mass and gives...Ch. 3 - 3.53 [I] An object has a mass of 300 g. (a)...Ch. 3 - 3.54 [I] A horizontal cable pulls a 200-kg cart...Ch. 3 - 3.55 [II] A 900-kg car is going 20 m/s along a...Ch. 3 - 3.56 [II] A 12.0-g bullet is accelerated from rest...Ch. 3 - 3.57 [II] A 20-kg crate hangs at the end of a long...Ch. 3 - 3.58 [II] A 5.0-kg mass hangs at the end of a...Ch. 3 - 3.59 [II] A 700-N man stands on a scale on the...Ch. 3 - 3.60 [II] Using the scale described in Problem...Ch. 3 - 3.61 [II] A cord passing over a frictionless,...Ch. 3 - 3.62 [II] An elevator starts from rest with a...Ch. 3 - 3.63 [II] Just as her parachute opens, a 60-kg...Ch. 3 - 3.64 [II] A 300-g mass hangs at the end of a...Ch. 3 - 3.65 [II] A 20-kg wagon is pulled along the level...Ch. 3 - 3.66 [II] A 12-kg box is released from the top of...Ch. 3 - 3.67 [I] A wooden crate weighing 1000 N is at...Ch. 3 - 3.68 [I] Someone wearing rubber-soled shoes is...Ch. 3 - 3.69 [I] A standing 580-N woman wearing climbing...Ch. 3 - 3.70 [II] For the situation outlined in Problem...Ch. 3 - 3.71 [II] An inclined plane makes an angle of ...Ch. 3 - 3.72 [II] A horizontal force F is exerted on a...Ch. 3 - 3.73 [II] An inclined plane making an angle of ...Ch. 3 - 3.74 [III] Repeat Problem 3.73 if the coefficient...Ch. 3 - 3.75 [III] A horizontal force of 200 N is required...Ch. 3 - 3.76 [II] Find the acceleration of the blocks in...Ch. 3 - 3.77 [III] Repeat Problem 3.76 if the coefficient...Ch. 3 - 3.78 [III] How large a force F is needed in Fig....Ch. 3 - 3.79 [III] In Fig. 3-28, how large a force F is...Ch. 3 - 3.80 [III] (a) What is the smallest force parallel...Ch. 3 - 3.81 [III] A 5.0-kg block rests on a incline. The...Ch. 3 - 3.82 [III] Three blocks with masses 6.0 kg, 9.0...Ch. 3 - 3.83 [I] Floating in space far from anything...Ch. 3 - 3.84 [I] Two cannonballs that each weigh 4.00...Ch. 3 - 3.85 [I] Imagine a planet and its moon...Ch. 3 - 3.86 [I] Two NASA vehicles separated by a...Ch. 3 - 3.87 [I] Suppose you are designing a small,...Ch. 3 - Prob. 88SPCh. 3 - Prob. 89SPCh. 3 - 3.90 [II] A space station that weighs 10.0 MN on...Ch. 3 - 3.91 [II] An object that weighs 2700 N on the...Ch. 3 - 3.92 [II] Imagine a planet having a mass twice...Ch. 3 - 3.93 [II] The Earth’s radius is about 6370 km. An...Ch. 3 - 3.94 [II] A man who weighs 1000 N on Earth stands...Ch. 3 - 3.95 [II] The radius of the Earth is about 6370...Ch. 3 - 3.96 [II] The fabled planet Dune has a diameter...Ch. 3 - 3.97 [III] An astronaut weighs 480 N on Earth. She...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY