Calculate the total number of electrons that can occupy (a) one s orbital, (b) three p orbitals, (c) five d orbitals, (d) seven f orbitals.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one s-orbital
Find the value of ‘l’ for one s-orbital
If the angular momentum quantum number (l) is 0, it corresponds to an s subshell for any value of the principal quantum number (n).
Find the value of ‘ml’ for one s-orbital
If l = 0, the magnetic quantum number (ml) has only one possible value which is again zero. It corresponds to an s orbital.
Count the electrons in one s-orbital
Answer to Problem 3.96QP
The total number of electrons which can occupy in one s-orbital is 2 (a).
Explanation of Solution
There is an s subshell in every shell and each s subshell contains just one orbital. In one orbital, there are two electrons are occupied. Therefore, the total number of electrons which can occupy in one s-orbital is 2.
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one p-orbital
Find the value of ‘l’ for one p-orbital
If the angular momentum quantum number (l) is 1, it corresponds to a p subshell for the principal quantum number (n) of 2 or greater values.
Find the value of ‘ml’ for one p-orbital
If l = 1, the magnetic quantum number (ml) has the three possible ways such as −1, 0 and +1 values. It corresponds to three p-subshells. They are labeled px, py, and pz with the subscripted letters indicating the axis along which each orbital is oriented. The three p orbitals are identical in size, shape and energy; they differ from one another only in orientation.
Count the electrons in one p-orbital.
Answer to Problem 3.96QP
The total number of electrons which can occupy in one p-orbital is 6 (b).
Explanation of Solution
There are three p-subshells in every p-orbitals. In one subshell, there are two electrons are occupied. In p-orbital, (3 × 2) = 6 electrons are occupied. Therefore, the total number of electrons which can occupy in one p-orbital is 6.
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one d-orbital
Find the value of ‘l’ for one d-orbital
If the angular momentum quantum number (l) is 2, it corresponds to a d subshell for the principal quantum number (n) of 3 or greater values.
Find the value of ‘ml’ for one d-orbital
If l = 2, the magnetic quantum number (ml) has the five possible ways such as −2, −1, 0, +1 and +2 values. It corresponds to five d-subshells.
Count the electrons in one d-orbital.
Answer to Problem 3.96QP
The total number of electrons which can occupy in one d-orbital is 10 (c).
Explanation of Solution
There are five d-subshells in every d-orbitals. In one subshell, there are two electrons are occupied. In d-orbital, (5 × 2) = 10 electrons are occupied. Therefore, the total number of electrons which can occupy in one d-orbital is 10.
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one f-orbital
Find the value of ‘l’ for one f-orbital
If the angular momentum quantum number (l) is 3, it corresponds to a f subshell for the principal quantum number (n) of 4 or greater values.
Find the value of ‘ml’ for one f-orbital.
Answer to Problem 3.96QP
The total number of electrons which can occupy in one f-orbital is 14 (d).
Explanation of Solution
If l = 3, the magnetic quantum number (ml) has the seven possible ways such as −3, −2, −1, 0, +1, +2 and +3 values. It corresponds to seven f-subshells.
Count the electrons in one f-orbital
There are seven f-subshells in every f-orbitals. In one subshell, there are two electrons are occupied. In f-orbital, (7 × 2) = 14 electrons are occupied. Therefore, the total number of electrons which can occupy in one f-orbital is 14.
Want to see more full solutions like this?
Chapter 3 Solutions
CHEMISTRY:ATOMS FIRST-2 YEAR CONNECT
- What is N hybridized? sp3 or sp2? whyarrow_forwardDate Unknown o Hydrated Salt Lab Sec. Name Trial I Trial 2 1. Mass of fired crucible and lid (g) 2. Mass of fired crucible, lid, and hydrated sah (g) 3. Instructor's approval of flame and apparatus 4. Mass of crucible, lid, and anhydrous salt Ist mass measurement (g) 2nd mass measurement (g) 3rd mass measurement (g). Desk No. Trial 3 48.833 46.808 213.692 51.507 9.359 46,615 50.296 48.211 45.351 50.142 48.146 45.1911 50.103 48.132 45.186 5. Final mass of crucible, lid, and anhydrous salt (g) 50.180 4.13 45.243 Calculations 1. Mass of hydrated salt (g) 2. Mass of anhydrous salt (g) 2.674 2.491 2.9239 1.3479 1.2959 1.5519 3. Mass of water lost (g) 1.32791969 1.322g 4. Percent by mass of volatile water in hydrated salt (%) 49.6% 48% 216.9% 5. Average percent HO in bydrated salt (%H,O) 5. Standard deviation of %H,O Relative standard deviation of %H,O in hydrated salt (RSD) how calculations on next page. 48.17% Data Analysis, B Data Analysis, C Data Analysis, D Experiment 5 89arrow_forwardConsidering the irregular electronic configurations we discussed for certain transitionmetals, think about the possibility of silicon (Si) having a [Ne]3s 2 3p 2 configuration vs.[Ne]3s 1 3p 3. Discuss the pros and cons of both configurations. Which one does Si actuallyadopt and why?arrow_forward
- (5 Pts) Currently, the last element in the periodic table is number 118, oganesson (Og). Channel your inner Dimitri Mendeleev and predict element 119’s electronic configuration, atomic mass, density, and either melting or boiling point. Justify your answers.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardShow work. don't give Ai generated solutionarrow_forward
- 21. Zn Cl₂→ ZnCl2 22. ZnCO3 ZnO CO₂ 23. Mg + Sg MgS 24. Fe + Cl₂ FeCl3 25. Ag + S8 Ag₂S 26. K S8 K₂S 27. Al HCI AlCl3 H2 28. Mg H3PO4 Mg3(PO4)2 + H₂ 29. Cu + AgNO3 Cu(NO3)2 + Ag 30. Al + Pb(NO3)2 Pb + Al(NO3)3 31. Zn + Sn(NO3)4 Zn(NO3)2 Sn 32. Cl2 + All 3 AlCl3 _ 12 33. Br2 + Cul CuBr 12 34. KBr + Pb(NO3)2 KNO3 PbBr2 These next ones have an element shared between two different compounds. The Total amount in the Reactatnt still needs to equal the total amount in the product. 35.H₂O2 ← H₂O + 0₂ 36. C₂Ho CO2 + H₂O 37. Zn + HCI → ZnCl+ H₂ 38. NH3 + _HCl → NH.C 39. Mg(OH)2 + H3PO4 → H₂O+ Mg3(PO4)2 40. NHẠOH + FeCl3 NH4Cl + Fe(OH)3arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardBalance the following equations Synthesis Ca 1. Mg + Cl₂ → MgCl2Syn 2. Al + 302 -> 2A1203Com 3. P4 + 502 4. Bi + + Cl₂ 5. H2 + N2 ↑ 6. Zn + 02 7. Cu + 02 8. Sn + 9. Na 10. 11. AR Ag + Cl₂ S8 I2 ↑ ↑ ↑ ↑ Pb + 12. Al + Br₂ 13. Fe + F2 ↑ 14. Sn + 15. Sb + 16. Ca + 17. Ba + 02 ↑ ↑ ↑ P4010 Com BiCl, Syn NH3 Syn Zno Com Cu2O com SnCl4 Syn Na2S Syn Agl Syn Pbo Com AlBr, yn FeF3 Syn Sno com Sb₂Ss Syn Cao cơm Bao cơm 18. Mg + P4 -> Mg3P2 Syn 19. K + K&N Syn ZnS Syn 20. Znarrow_forward
- Nonearrow_forwardConsidering the important roles of biothiols in lysosomes of live organisms, and unique photophysical / photochemical properties of ruthenium(II) complexes, a novel ruthenium(II) complex, Ru-2, has been developed as a molecular probe for phosphorescence and time-gated luminescence assay of biothiols in human sera, live cells, and in vivo. Ru-2 is weakly luminescent due to the effective photoinduced electron transfer (PET) from Ru(II) luminophore to electron acceptor, 2,4-dinitrobenzene-sulfonyl (DNBS). In the presence of biothiols, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), the emission of Ru-2 solution was switched ON, as a result of the cleavage of quencher to form the product, Ru-1. Ru-2 showed high selectivity and sensitivity for the detection of biothiols under physiological conditions, with detection limits of 62 nM, 146 nM, and 115 nM for GSH, Cys, and Hcy, respectively. The emission lifetimes of Ru-1 and Ru-2 were measured to be 405 and 474 ns,…arrow_forwardIn an effort to reduce costs and increase the accessibility of instruments that utilize spectrophotometric detection, some researchers are beginning to experiment with 3D-printed parts. One example of this is the 3D-printed flow cell, shown at right. This device was made using polylactic acid and accommodates a LED at one end and a detector at the other. It can be used for standalone flow injection spectrophotometry or coupled to a chromatographic separation to be used as a detector. Explain why the sensitivity varies with the length of the flow cell, as shown in the data below. Could this setup be used for fluorescence analysis? Why or why not?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781559539418/9781559539418_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)