ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
4th Edition
ISBN: 9781119249214
Author: FELDER
Publisher: INTER WILE
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.68P
Interpretation Introduction

(a)

Interpretation:

The resistance thermometer calibration formula for T (°C) in terms of r (ohm) should be derived.

Concept introduction:

The relationship between the temperature and the resistance should be written as follows:

T(0C)=a r(ohm)+b

Where, a and b are taken as the constants.

Interpretation Introduction

(b)

Interpretation:

The given gas law expression to an expression for n (kmol/min) in terms of P(mm Hg) T(°C) and V(m3/min) should be converted.

Concept introduction:

The given gas law needs to be equated to convert the expressions.

n.(kmols)=12.186P(atm)×V.(m3/s)T(K)

Here, n. is molar flow rate of gas and V. is volumetric flow rate of the gas.

Conversion factors will be used to generate the desired conversions.

Interpretation Introduction

(c)

Interpretation:

The temperatures and pressures at point 1,2 and 3 should be determined.

Concept introduction:

The derived equation from part (a) must be used to solve the temperatures as:

T(0C)=10.634 r(ohm)-251.22.

For the pressure calculation, the following formula needs to be used:

P(mmHg)=h+P(atm).

Interpretation Introduction

(d)

Interpretation:

The molar flow rate of the combined gas stream should be calculated.

Concept introduction:

The point 1 with methane gas and point 2 with air are combined as the gas stream.

The molar flow rate at the two points should be calculated with following formula obtained in part (b):

n'.=0.016034×P'mmHg×V'.(m3/min)T'0C+273

The molar flow rate at two points should be added to get the molar flow rate of the combined stream.

Interpretation Introduction

(e)

Interpretation:

The reading of flowmeter 3 in m3/min should be cakculated.

Concept introduction:

The flowmeter at point three will give the volumetric flow rate of the combined gas which can be determined using following equation obtained in part (b):

n'.=0.016034×P'mmHg×V'.(m3/min)T'0C+273.

From the equation:

V3=n3(T3+273)0.016034×P3

Interpretation Introduction

(f)

Interpretation:

The total mass flow rate and mass fraction of the methane at point 3 should be calculated.

Concept introduction:

The mass flow rate is calculated as mass flown per unit time and the mass fraction is the ratio of mass flow rate of one component to the mass flow rate of total component mixture.

Blurred answer
Students have asked these similar questions
In the production of ethyl acetate via reactive distillation, the column operates at 5 bar with an equimolar feed (ethanol + acetic acid) at 80°C. The reaction follows: \[CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O \quad (K_{eq} = 4.2 \text{ at } 80°C)\] Given: - NRTL parameters for all binary pairs - Tray efficiency = 65% - Vapor-liquid equilibrium exhibits positive azeotrope formation Calculate the exact minimum reflux ratio required to achieve 98% ethyl acetate purity in the distillate, assuming: 1) The reaction reaches equilibrium on each tray 2) The heavy key component is water
In a multi-stage distillation column designed to separate a binary mixture of ethanol and water, the mass flow rate of the feed entering the column is \( F \), and the distillate product flow rate is \( D \). The reflux ratio \( R \) is defined as the ratio of the liquid returned to the column to the distillate flow rate. For the ideal case, where the column operates at maximum efficiency, determine the **minimum reflux ratio** \( R_{\text{min}} \) when the relative volatility \( \alpha = 1.5 \).
Q2: Draw the layout of a basic asynchronous 32k * 8 SRAM.

Chapter 3 Solutions

ELEMENTARY PRINCIPLES OF CHEM. PROCESS.

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The