Ecotourists use their global positioning system indicator to determine their location inside a botanical garden as latitude 0.002 43 degree south of the equator, longitude 75.642 38 degrees west. They wish to visit a tree at latitude 0.001 62 degree north, longitude 75.644 26 degrees west. (a) Determine the straight-line distance and the direction in which they can walk to reach the tree as follows. First model the Earth as a sphere of radius 6.37 × 10 6 m to determine the westward and northward displacement components required, in meters. Then model the Earth as a flat surface to complete the calculation. (b) Explain why it is possible to use these two geometrical models together to solve the problem.
Ecotourists use their global positioning system indicator to determine their location inside a botanical garden as latitude 0.002 43 degree south of the equator, longitude 75.642 38 degrees west. They wish to visit a tree at latitude 0.001 62 degree north, longitude 75.644 26 degrees west. (a) Determine the straight-line distance and the direction in which they can walk to reach the tree as follows. First model the Earth as a sphere of radius 6.37 × 10 6 m to determine the westward and northward displacement components required, in meters. Then model the Earth as a flat surface to complete the calculation. (b) Explain why it is possible to use these two geometrical models together to solve the problem.
Solution Summary: The author determines the straight line distance and the direction for the walk to reach the tree as follows.
Ecotourists use their global positioning system indicator to determine their location inside a botanical garden as latitude 0.002 43 degree south of the equator, longitude 75.642 38 degrees west. They wish to visit a tree at latitude 0.001 62 degree north, longitude 75.644 26 degrees west. (a) Determine the straight-line distance and the direction in which they can walk to reach the tree as follows. First model the Earth as a sphere of radius 6.37 × 106 m to determine the westward and northward displacement components required, in meters. Then model the Earth as a flat surface to complete the calculation. (b) Explain why it is possible to use these two geometrical models together to solve the problem.
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 3 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.