
Concept explainers
(¦ Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without tins designation typically require integrating or extending the concepts presented thus far.)
. Six blocks with different masses, m, each start from rest at the top of smooth, frictionless inclines having length d and vertical height h and slide down. Rank the order, from greatest to smallest, of the Final kinetic energies of the masses when they reach the bottom of the inclines after having traveled their full lengths. If any of the situations yield the same kinetic energies, give them the same ranking,
(a) m = 10 kg; A=lm; and d = 10 m
(b) m = 10 kg; h = 1 m; and d = 5 m
(c) m = 5 kg; h = 0.5 m; and d = 10 m
(d) m = 1 kg; k = 2 m; and d = 5 m
(e) m= 1 kg; k = 0.5 m; and d = 5 m
(f) m = 15 kg; h = 0.75 m; and d = 7.5 m

The rank of each blocks according to the kinetic energy when they reach at the bottom.
Answer to Problem 35Q
The rank of all blocks is,
Explanation of Solution
Given information:
The mass, and height and length of its position are given,
Concept Used:
The potential energy,
Calculation:
At the height, the velocity is zero. So, there will be no kinetic energy. The total energy will be the potential energy itself. At ground, the potential energy will be zero. The initial potential energy will completely convert into the kinetic energy. So, the kinetic energy of the block when it reaches ground is equal to the potential energy at the starting point. Let g be the acceleration due to gravity, the energy of each block can be represented as,
Thus, the rank of each block,
Conclusion:
The rank of all blocks is,
Want to see more full solutions like this?
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





