(a)
Calculate the dry unit weight of the soil.
(a)

Answer to Problem 3.4P
The dry unit weight of the soil is
Explanation of Solution
Given information:
The diameter of the cylindrical mold
The height of the cylindrical mold
The weight of the compacted soil
The moisture content
The specific gravity of the soil solids
Calculation:
Calculate the volume of the mold
Substitute
Calculate the dry unit weight of the soil
Substitute 4 lb for W,
Hence, the dry unit weight of the soil is
(b)
Calculate the void ratio of the soil.
(b)

Answer to Problem 3.4P
The void ratio of the soil is
Explanation of Solution
Given information:
The diameter of the cylindrical mold
The height of the cylindrical mold
The weight of the compacted soil
The moisture content
The specific gravity of the soil solids
Calculation:
Refer to part (a).
The dry unit weight of the soil
Consider the unit weight of water
Calculate the void ratio of the soil
Substitute 2.72 for
Hence, the void ratio of the soil is
(c)
Calculate the degree of saturation of the soil.
(c)

Answer to Problem 3.4P
The degree of saturation of the soil is
Explanation of Solution
Given information:
The diameter of the cylindrical mold
The height of the cylindrical mold
The weight of the compacted soil
The moisture content
The specific gravity of the soil solids
Calculation:
Refer to part (b).
The void ratio of the soil is 0.568.
Consider the unit weight of water
Calculate the degree of saturation
Substitute 2.72 for
Hence, the degree of saturation of the soil is
(d)
Calculate the additional water needed to achieve
(d)

Answer to Problem 3.4P
The required additional water to achieve
Explanation of Solution
Given information:
The diameter of the cylindrical mold
The height of the cylindrical mold
The weight of the compacted soil
The moisture content
The specific gravity of the soil solids
Calculation:
Refer to part (b).
The void ratio of the soil is 0.568.
Consider the unit weight of water
Calculate the saturated unit weight of the soil
Substitute 2.72 for
Calculate the unit weight
Substitute 4 lb for W and
Calculate the additional water needed to achieve
Substitute
Therefore, the additional water needed is
Want to see more full solutions like this?
Chapter 3 Solutions
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 2 terms (12 months)
- PLease make sure to show all work and all steps for the image find the magnitude and stressesarrow_forwardShowing all work and steps find the magnituded and stress ,arrow_forwardWhat is the value of the influence line for the reaction at support A for the beam shown at 5 m to the right of A? Select the reaction at support B to be the redundant. a. 0 kN b. -0.167 kN c. 0.425 kN d. 1.0 kNarrow_forward
- Determine the force in member AB of the truss shown due to a temperature drop of 25°C in Members AB, BC, and CD and a temperature increase of 60°C in member EF. Use the method of consistent deformations. a. 37.34 k b. 0 k c. 28 k d. 46.67 karrow_forwardWhat is the approximate axial force in girder EF of the frame shown? Use the portal method. a. 32 kN b. 60 kN c. 12 kN d. 20kNarrow_forwardDetermine the vertical reaction at C for the beam shown and support settlements of 1" at B and ¼" at C. a. 27.0 k b. 28.3 k c. 43.7 k d. 21.0 karrow_forward
- What is the horizontal reaction component at D for the frame shown? a. 75.00 kN b. 91.67 kN c. 70.31 kN d. 4.69 kNarrow_forwardFind the vertical reaction at D for the frame shown and a settlement of 50 mm at support D. a. 80.7 kN b. 112.5 kN c. 144.3 kN d. 6.51 kNarrow_forwardDetermine if the W14x 22 beam will safely support a loading of w= 1.5 kip/ft. Theallowable bending stress is oallow = 22 ksi and the allowable shear stress is Tallow = 12 ksi.arrow_forward
- What is the fixed end moment FEMAB for the beam shown with a settlement of 1.2 in. at support B? a. -102.7 ft-k b. -95.2 ft-k c. -307.7 ft-k d. 279.8 ft-karrow_forwardSuggest an optimum footing size and shape (minimum area footing), if the vertical loading (includingthe weight of the footing) is 40 kips, and the soil has the following characteristics: c=200 psf, φ=370,and γ=120.0 lb/ft 3. Constraints of the solution are: the maximum dimension of any side of thefooting is 10 ft, and the depth of embedment is between 2 and 4 ft.arrow_forward15.6 A mountain stream flows over a rocky streambed. Apply the Limerinos and Chezy equations to calculate the discharge. The stream has an intermediate rock size d 84 of 30 cm, an average depth of 2.1 m, a slope of S = 0.0037, and a width of 52 m. In SI units, what is the discharge? a. 85, b. 120, c. 160, d. 240, or e. 410.arrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning



