Fundamentals of Geotechnical Engineering (MindTap Course List)
Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.4P

(a)

To determine

Find the moist unit weight of the soil sample.

(a)

Expert Solution
Check Mark

Answer to Problem 3.4P

The moist unit weight of the soil sample is 18.07kN/m3_.

Explanation of Solution

Given information:

The volume of moist soil sample is V=5.66×103m3.

The moist weight of the soil is W=102.3×103kN.

The moisture content of the soil solid is w=11%.

The specific gravity of soil solids is Gs=2.7.

Calculation:

Find the moist unit weight (γ) using the equation:

γ=WV

Substitute 102.3×103kN for W and 5.66×103m3 for V.

γ=102.3×1035.66×103=18.07kN/m3

Therefore, the moist unit weight of the soil sample is 18.07kN/m3_.

(b)

To determine

Find the dry unit weight of the soil sample.

(b)

Expert Solution
Check Mark

Answer to Problem 3.4P

The dry unit weight of the soil sample is 16.28kN/m3_.

Explanation of Solution

Given information:

The volume of moist soil sample is V=5.66×103m3.

The moist weight of the soil is W=102.3×103kN.

The moisture content of the soil solid is w=11%.

The specific gravity of soil solids is Gs=2.7.

Calculation:

Refer part (a);

The moist unit weight of soil sample is γ=18.07kN/m3.

Find the dry unit weight (γd) using the equation:

γd=γ1+w

Substitute 18.07kN/m3 for γ and 11% for w.

γd=18.071+11100=16.28kN/m3

Therefore, the dry unit weight of the soil sample is 16.28kN/m3_.

(c)

To determine

Find the void ratio of the soil sample.

(c)

Expert Solution
Check Mark

Answer to Problem 3.4P

The void ratio of the soil sample is 0.626_.

Explanation of Solution

Given information:

The volume of moist soil sample is V=5.66×103m3.

The moist weight of the soil is W=102.3×103kN.

The moisture content of the soil solid is w=11%.

The specific gravity of soil solids is Gs=2.7.

Calculation:

Refer part (b);

The dry unit weight of soil sample is γd=16.28kN/m3.

Find the void ratio (e) using the equation:

γd=Gsγw1+e

Here, the specific gravity of soil solids is Gs.

Substitute 16.28kN/m3 for γd, 2.7 for Gs, and 9.81kN/m3 for γw.

16.28=2.7×9.811+e1+e=26.48716.28e=0.626

Therefore, the void ratio of the soil sample is 0.626_.

(d)

To determine

Find the porosity of the soil sample.

(d)

Expert Solution
Check Mark

Answer to Problem 3.4P

The porosity of the soil sample is 0.385_.

Explanation of Solution

Given information:

The volume of moist soil sample is V=5.66×103m3.

The moist weight of the soil is W=102.3×103kN.

The moisture content of the soil solid is w=11%.

The specific gravity of soil solids is Gs=2.7.

Calculation:

Refer part (c);

The void ratio of soil sample is e=0.626.

Find the porosity (n) using the equation:

n=e1+e

Substitute 0.626 for e.

n=0.6261+0.626=0.385

Therefore, the porosity of the soil sample is 0.385_.

(e)

To determine

Find the degree of saturation of the soil sample.

(e)

Expert Solution
Check Mark

Answer to Problem 3.4P

The degree of saturation of the soil sample is 47.4%_.

Explanation of Solution

Given information:

The volume of moist soil sample is V=5.66×103m3.

The moist weight of the soil is W=102.3×103kN.

The moisture content of the soil solid is w=11%.

The specific gravity of soil solids is Gs=2.7.

Calculation:

Refer part (c);

The void ratio of soil sample is e=0.626.

Find the degree of saturation (S) using the relation:

S=wGse×100%

Substitute 0.11 for w, 2.7 for Gs, and 0.626 for e.

S=0.11×2.70.626×100%=47.4%

Therefore, the degree of saturation of the soil sample is 47.4%_.

(f)

To determine

Find the volume occupied by water.

(f)

Expert Solution
Check Mark

Answer to Problem 3.4P

The volume occupied by water is 0.001m3_.

Explanation of Solution

Given information:

The volume of moist soil sample is V=5.66×103m3.

The moist weight of the soil is W=102.3×103kN.

The moisture content of the soil solid is w=11%.

The specific gravity of soil solids is Gs=2.7.

Calculation:

Find the weight of soil (Ws) solids using the equation:

Ws=W1+w

Substitute 102.3×103kN for W and 0.11 for w.

Ws=102.3×1031+0.11=92.16×103kN

Find the weight of water (Ww) using the relation:

Ww=WWs

Substitute 102.3×103kN for W and 92.16×103kN for Ws.

Ww=102.3×10392.16×103=10.14×103kN

Find the volume occupied by water (Vw) using the relation:

γw=WwVw

Substitute 9.81kN/m3 for γw and 10.14×103kN for Ws.

9.81=10.14×103VwVw=0.001m3

Therefore, the volume occupied by water is 0.001m3_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Five wood boards are bolted together to form the built-up beam shown in the figure. The beam is subjected to a shear force of V = 13 kips. Each bolt has a shear strength of Vbolt = 6 kips. [h₁ =4.25 in., t₁ = 0.5 in., h₂ = 6 in., t₂ = 1 in.] hi + hi/2 h:/2 h: 2 h + h/2 Determine the moment of inertia of the section. Determine the maximum allowable spacing of the bolts. Determine the shear flow in the section connected by fasteners.
A vessel has a diameter of 1m and 2m high is moving downward with a positive acceleration of 3m/s2. The pressure at the bottom of the liquid is 9.534kPa, determine the mass of the liquid.
You are the engineer asked to design a rapid sand filtration system for a small water treatment plant. It has the following characteristics: Hydraulic loading rate = 6 m/h Total volumetric flow rate of the plant = 3 MGD Effective filtration rate = 5.8 m/h Production efficiency = 97% Complete (filtration, rinsing, and backwashing) filter cycle duration = 48 h What is the area of your square filtration system? What are the surface dimensions of the filter? What volume of water is needed for backwashing plus rinsing the filter in each rinsing cycle?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning