
Concept explainers
(a)
Find the moist unit weight of the soil sample.
(a)

Answer to Problem 3.4P
The moist unit weight of the soil sample is
Explanation of Solution
Given information:
The volume of moist soil sample is
The moist weight of the soil is
The moisture content of the soil solid is
The specific gravity of soil solids is
Calculation:
Find the moist unit weight
Substitute
Therefore, the moist unit weight of the soil sample is
(b)
Find the dry unit weight of the soil sample.
(b)

Answer to Problem 3.4P
The dry unit weight of the soil sample is
Explanation of Solution
Given information:
The volume of moist soil sample is
The moist weight of the soil is
The moisture content of the soil solid is
The specific gravity of soil solids is
Calculation:
Refer part (a);
The moist unit weight of soil sample is
Find the dry unit weight
Substitute
Therefore, the dry unit weight of the soil sample is
(c)
Find the void ratio of the soil sample.
(c)

Answer to Problem 3.4P
The void ratio of the soil sample is
Explanation of Solution
Given information:
The volume of moist soil sample is
The moist weight of the soil is
The moisture content of the soil solid is
The specific gravity of soil solids is
Calculation:
Refer part (b);
The dry unit weight of soil sample is
Find the void ratio (e) using the equation:
Here, the specific gravity of soil solids is
Substitute
Therefore, the void ratio of the soil sample is
(d)
Find the porosity of the soil sample.
(d)

Answer to Problem 3.4P
The porosity of the soil sample is
Explanation of Solution
Given information:
The volume of moist soil sample is
The moist weight of the soil is
The moisture content of the soil solid is
The specific gravity of soil solids is
Calculation:
Refer part (c);
The void ratio of soil sample is
Find the porosity (n) using the equation:
Substitute 0.626 for e.
Therefore, the porosity of the soil sample is
(e)
Find the degree of saturation of the soil sample.
(e)

Answer to Problem 3.4P
The degree of saturation of the soil sample is
Explanation of Solution
Given information:
The volume of moist soil sample is
The moist weight of the soil is
The moisture content of the soil solid is
The specific gravity of soil solids is
Calculation:
Refer part (c);
The void ratio of soil sample is
Find the degree of saturation (S) using the relation:
Substitute 0.11 for w, 2.7 for
Therefore, the degree of saturation of the soil sample is
(f)
Find the volume occupied by water.
(f)

Answer to Problem 3.4P
The volume occupied by water is
Explanation of Solution
Given information:
The volume of moist soil sample is
The moist weight of the soil is
The moisture content of the soil solid is
The specific gravity of soil solids is
Calculation:
Find the weight of soil
Substitute
Find the weight of water
Substitute
Find the volume occupied by water
Substitute
Therefore, the volume occupied by water is
Want to see more full solutions like this?
Chapter 3 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
- 6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forwardProblem 5 (A, B, C and D are fixed). Find the reactions at A and D 8 k B 15 ft A -20 ft C 10 ft Darrow_forwardProblem 4 (A, B, E, D and F are all pin connected and C is fixed) Find the reactions at A, D and F 8 m B 6m E 12 kN D F 4 marrow_forward
- Problem 1 (A, C and D are pins) Find the reactions and A, C and D. D 6 m B 12 kN/m 8 m A C 6 marrow_forwardUniform Grade of Pipe Station of Point A is 9+50.00. Elevation Point A = 250.75.Station of Point B is 13+75.00. Elevation Point B = 244.10 1) Calculate flowline of pipe elevations at every 50 ft. interval (Half Station). 2) Tabulate station and elevation for each station like shown on example 3) Draw Sketcharrow_forward40m 150N B 40marrow_forward
- Note: Please accurately answer it!. I'll give it a thumbs up or down based on the answer quality and precision. Question: What is the group name of Sample B in problem 3 from the image?. By also using the ASTM flow chart!. This unit is soil mechanics btwarrow_forwardPick the rural location of a project site in Victoria, and its catchment area-not bigger than 25 sqkm, and given the below information, determine the rainfall intensity for ARI = 5, 50, 100 year storm event. Show all the details of the procedure. Each student must propose different length of streams and elevations. Use fig below as a sample only. Pt. E-ht. 95.0 200m 600m PLD-M. 91.0 300m Pt. C-93.0 300m PL.B-ht. 92.0 PL.F-ht. 96.0 500m Pt. A-M. 91.00 To be deemed satisfactory the solution must include: Q.F1.1.Choice of catchment location Q.F1.2. A sketch displaying length of stream and elevation Q.F1.3. Catchment's IFD obtained from the Buro of Metheorology for specified ARI Q.F1.4.Calculation of the time of concentration-this must include a detailed determination of the equivalent slope. Q.F1.5.Use must be made of the Bransby-Williams method for the determination of the equivalent slope. Q.F1.6.The graphical display of the estimation of intensities for ARI 5,50, 100 must be shown.arrow_forwardQUANTITY SURVEYINGarrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning




