Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.47P
(a)
To determine
The potentials
(b)
To determine
To show that if
(c)
To determine
The superpotential
(d)
To determine
Use the results of parts (a) and (c), and Problem 2.23(b), to determine the superpotential
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let T:V to V be linear with finite dimV=n, if f(x)=(-1)^n (x-λ_1)^α_1...(x-λ_r)^α_rLet W be a nonzero invariant T subspace of V. Prove that there exists v in W and such that v is an eigenvector of T, with v different of 0.
The dynamics of a particle moving one-dimensionally in a potential V (x)
is governed by the Hamiltonian Ho = p²/2m + V (x), where p =
is the momentuin operator. Let E, n =
of Ho. Now consider a new Hamiltonian H
given parameter. Given A, m and E, find the eigenvalues of H.
-ih d/dx
1, 2, 3, ... , be the eigenvalues
Ho + Ap/m, where A is a
%3|
Consider a spin-1 particle with Hamiltonian
Ĥ = AS² + B(S² − S²).
Assume B < A, treat the second term as a perturbation, and calculate the unperturbed
energies and their first-order corrections using perturbation theory. Be careful of the degen-
eracy. Compare your perturbative results with the exact eigenvalues.
Chapter 3 Solutions
Introduction To Quantum Mechanics
Ch. 3.1 - Prob. 3.1PCh. 3.1 - Prob. 3.2PCh. 3.2 - Prob. 3.3PCh. 3.2 - Prob. 3.4PCh. 3.2 - Prob. 3.5PCh. 3.2 - Prob. 3.6PCh. 3.3 - Prob. 3.7PCh. 3.3 - Prob. 3.8PCh. 3.3 - Prob. 3.9PCh. 3.3 - Prob. 3.10P
Ch. 3.4 - Prob. 3.11PCh. 3.4 - Prob. 3.12PCh. 3.4 - Prob. 3.13PCh. 3.5 - Prob. 3.14PCh. 3.5 - Prob. 3.15PCh. 3.5 - Prob. 3.16PCh. 3.5 - Prob. 3.17PCh. 3.5 - Prob. 3.18PCh. 3.5 - Prob. 3.19PCh. 3.5 - Prob. 3.20PCh. 3.5 - Prob. 3.21PCh. 3.5 - Prob. 3.22PCh. 3.6 - Prob. 3.23PCh. 3.6 - Prob. 3.24PCh. 3.6 - Prob. 3.25PCh. 3.6 - Prob. 3.26PCh. 3.6 - Prob. 3.27PCh. 3.6 - Prob. 3.28PCh. 3.6 - Prob. 3.29PCh. 3.6 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48P
Knowledge Booster
Similar questions
- b): Consider two identical linear oscillators' having a spring constant k. The interaction potential is H = Ax|X2, where xi and x2 are the coordinates of the oscillators. Obtain the energy eigen values.arrow_forwardDivergence theorem. (a) Use the divergence theorem to prove, v = -478 (7) (2.1) (b) [Problem 1.64, Griffiths] In case you're not persuaded with (a), try replacing r by (r² + e²)2 and watch what happens when ɛ → 0. Specifically, let 1 -V². 4л 1 D(r, ɛ) (2.2) p2 + g2 By taking note of the defining conditions of 8°(7) [(1) at r = 0, its value goes to infinity, (2) for all r + 0, its value is 0, and (3) the integral over all space is 1], demonstrate that 2.2 goes to 8*(F) as ɛ → 0.arrow_forward问题6 The Hamiltonian operator Ĥ for the harmonic oscillator is given by h d? + uw? â2, where u is the reduced mass and w = 2Tv is the angular 2µ da? frequency. Is the function f(x) = x exp- iwa? an eigenfunction of that Hamiltonian? 2h O No. Yes, and the eigenvalue is hw. Yes, and the eigenvalue is hw. 3ħw Yes, and the eigenvalue is 4arrow_forward
- Starting with the equation of motion of a three-dimensional isotropic harmonic ocillator dp. = -kr, dt (i = 1,2,3), deduce the conservation equation dA = 0, dt where 1 P.P, +kr,r,. 2m (Note that we will use the notations r,, r2, r, and a, y, z interchangeably, and similarly for the components of p.)arrow_forwardnumber 6 a b c pleasearrow_forwardlog z = log r + i is holomorphic in the region r>0 and - < 0 <. 10. Show that where z = re¹ with - < 0 < where is the Laplacian Ә əz əz A = 4 əz əz dx² 8² dy² 11. Use Exercise 10 to prove that if f is bolomorphic in the open set , then the real and imaginary parts of f are harmonic; that is, their Laplacian is zero.arrow_forward
- Q3arrow_forwardProblem #1 (Problem 5.3 in book). Come up with a function for A (the Helmholtz free energy) and derive the differential form that reveals A as a potential: dA < -SdT – pdV [Eqn 5.20]arrow_forwardBit confused you say with is the definition of a complex conjugate but all I've ever seen is |X|^2=(X*)(X). Can you provide maybe a reference or proof of this?arrow_forward
- Problem 2 Verify the Jacobi identity for Poisson brackets, {A, {B,C}} + {B, {C, A}} + {C, {A, B}} = 0 where the Poisson bracket is defined by n {X, Y} == Σ ΟΧ ΟΥ ΟΧ ΟΥ Әді дрі api əqi i=1 Here are the (canonical) coordinates, p; are the corresponding momenta, and n is the number of degrees of freedom.arrow_forward8.8 ** Two masses m, and m, move in a plane and interact by a potential energy U(r) = Įkr?, Write down their Lagrangian in terms of the CM and relative positions R and r, and find the equations of motion for the coordinates X, Y and x, y. Describe the motion and find the frequency of the relative motion.arrow_forwardPls answer no. 1 thank uarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON