ORGANIC CHEMISTRY PRINCIPLES & MECHANISM
ORGANIC CHEMISTRY PRINCIPLES & MECHANISM
2nd Edition
ISBN: 9780393681826
Author: KARTY
Publisher: NORTON
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.27P
Interpretation Introduction

(a)

Interpretation:

Among molecules mentioned in the question, it is to be determined which has shorter C-C distance. Also the molecule which has stronger C-C bonds is to be determined.

Concept introduction:

Hybridization affects both bond length and bond strength. The two sp hybrid atomic orbitals are formed by mixing one s orbital and one of the three p orbitals from the valence shell. Each sp hybrid orbital formed has 50% s character and 50% p character. Three sp2 hybrid atomic orbitals are formed by mixing one s orbital and two of the three p orbitals from the valence shell. Each sp2 hybrid orbital formed has 33.33%s character and 66.67% p character. Four sp3 hybrid atomic orbitals are formed by mixing the one s orbital and three p orbitals from the valence shell. Each sp3 hybrid orbital formed has 25% s character and 75% p character. As the s character increases, the hybrid atomic orbital becomes more compact. The bonds formed by shorter atomic orbitals are shorter in length. The shorter bonds connecting the same atoms are stronger. Therefore, as the hybridization of an atom changes from sp3 to sp2 to sp, its bonds become shorter and stronger.

Expert Solution
Check Mark

Answer to Problem 3.27P

Explanation of Solution

The structure of the molecules mentioned in the question is shown below:

ORGANIC CHEMISTRY PRINCIPLES & MECHANISM, Chapter 3, Problem 3.27P , additional homework tip  1

The two sp hybrid atomic orbitals are formed by mixing one s orbital and one of the three p orbitals from the valence shell. Each sp hybrid orbital formed has 50% s character and 50% p character. Three sp2 hybrid atomic orbitals are formed by mixing one s orbital and two of three p orbitals from the valence shell. Each sp2 hybrid orbital formed has 33.33%s character and 66.67% p character. Four sp3 hybrid atomic orbitals are formed by mixing the one s orbital and three p orbitals from the valence shell. Each sp3 hybrid orbital formed has 25% s character and 75% p character. As the hybridization of an atom changes from sp3 to sp2 to sp, its bonds become shorter and stronger.

In the first molecule, according to VSEPR theory, the C1 carbon atom is surrounded by two electron groups – a triple bond and a single bond. The electron geometry of C1 carbon atom is linear. Therefore, the C1 carbon atom must be sp hybridized. In the first molecule, according to VSEPR theory, the C2 carbon atom is surrounded by four electron groups – four single bonds. The electron geometry of C2 carbon atom is tetrahedral. Therefore, the C2 carbon atom must be sp3 hybridized.

In the second molecule, according to VSEPR theory, the C1 carbon atom is surrounded by four electron groups – four single bonds. The electron geometry of C1 carbon atom is tetrahedral. Therefore, the C1 carbon atom must be sp3 hybridized. In the second molecule, according to VSEPR theory, the C2 carbon atom is surrounded by three electron groups – a double bond and two single bonds. The electron geometry of C2 carbon atom is trigonal planar. Therefore, the C2 carbon atom must be sp2 hybridized. In second molecule, according to VSEPR theory, the C3 carbon atom is surrounded by four electron groups – four single bonds. The electron geometry of C3 carbon atom is tetrahedral. Therefore, the C3 carbon atom must be sp3 hybridized.

This shows that in the first molecule, the percentage s character in C-C bond is more than in the second molecule. Therefore, the C-C bond is shorter and stronger in the first molecule.

Conclusion

Bond length and bond strength is determined from the hybridization involved in the molecule.

Interpretation Introduction

(b)

Interpretation:

Among the molecules mentioned in the question, it is to be determined which has shorter C-N distance. Also the molecule which has stronger C-N bonds is to be determined.

Concept introduction:

Hybridization affects both bond length and bond strength. The two sp hybrid atomic orbitals are formed by mixing one s orbital and one of the three p orbitals from the valence shell. Each sp hybrid orbital formed has 50% s character and 50% p character. Three sp2 hybrid atomic orbitals are formed by mixing one s orbital and two of the three p orbitals from the valence shell. Each sp2 hybrid orbital formed has 33.33%s character and 66.67% p character. Four sp3 hybrid atomic orbitals are formed by mixing the one s orbital and three p orbitals from the valence shell. Each sp3 hybrid orbital formed has 25% s character and 75% p character. As the s character increases, the hybrid atomic orbital becomes more compact. The bonds formed by shorter atomic orbitals are shorter in length. The shorter bonds connecting the same atoms are stronger. Therefore, as the hybridization of an atom changes from sp3 to sp2 to sp, its bonds become shorter and stronger.

Expert Solution
Check Mark

Answer to Problem 3.27P

Explanation of Solution

The structure of the molecules mentioned in the question is shown below:

ORGANIC CHEMISTRY PRINCIPLES & MECHANISM, Chapter 3, Problem 3.27P , additional homework tip  2

The two sp hybrid atomic orbitals are formed by mixing one s orbital and one of the three p orbitals from the valence shell. Each sp hybrid orbital formed has 50% s character and 50% p character. Three sp2 hybrid atomic orbitals are formed by mixing one s orbital and two of the three p orbitals from the valence shell. Each sp2 hybrid orbital formed has 33.33%s character and 66.67% p character. Four sp3 hybrid atomic orbitals are formed by mixing the one s orbital and three p orbitals from the valence shell. Each sp3 hybrid orbital formed has 25% s character and 75% p character. As the hybridization of an atom changes from sp3 to sp2 to sp, its bonds become shorter and stronger.

In the first molecule, according to VSEPR theory, the C1 carbon atom is surrounded by two electron groups – a triple bond and a single bond. The electron geometry of C1 carbon atom is linear. Therefore, the C1 carbon atom must be sp hybridized. In the first molecule, according to VSEPR theory, the nitrogen atom is surrounded by two electron groups – a lone pair and a triple bond. The electron geometry of nitrogen atom is linear. Therefore, the nitrogen atom must be sp hybridized.

In the second molecule, according to VSEPR theory, the C2 carbon atom is surrounded by three electron groups – a double bond and two single bonds. The electron geometry of C2 carbon atom is trigonal planar. Therefore, the C2 carbon atom must be sp2 hybridized. In the second molecule, according to VSEPR theory, the nitrogen atom is surrounded by three electron groups – a lone pair, a single bond, and a double bond. The electron geometry of nitrogen atom is trigonal planar. Therefore, the nitrogen atom must be sp2 hybridized.

This shows that in the first molecule, the percentage s character in C-N bond is more than that in the second molecule. Therefore, the C-N bond is shorter and stronger in the first molecule.

Conclusion

Bond length and bond strength is determined from the hybridization involved in the molecule.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values ​​have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?
One liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning