(a)
The natural frequency
(a)
Answer to Problem 3.1P
The natural frequency
Explanation of Solution
Write the formula to find the natural frequency
Here,
Write the formula to find the period
Here,
Conclusion:
Substitute
Thus, the natural frequency is
Substitute
Thus, the period is
(b)
The total energy.
(b)
Answer to Problem 3.1P
The total energy is
Explanation of Solution
Write the formula to find the energy
Here,
Conclusion:
Substitute
Thus, the total energy is
(c)
The maximum speed.
(c)
Answer to Problem 3.1P
The maximum speed is
Explanation of Solution
The maximum velocity of the system is attained when the total energy of the system is equal to the kinetic energy of the system.
Write the formula to find the kinetic energy
Here,
Conclusion:
Substitute
Thus, the maximum velocity is
Want to see more full solutions like this?
Chapter 3 Solutions
Classical Dynamics of Particles and Systems
- A simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forwardShow that, if a driven oscillator is only lightly damped and driven near resonance, the Q of the system is approximately Q2(TotalenergyEnergylossduringoneperiod)arrow_forward
- A pendulum with a period of 2.00000 s in one location (g=9.80m/s2) is moved to a new location where the period is now 1.99796 s. What is the acceleration due to gravity at its new location?arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forwardIf the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forward
- Plot a velocity resonance curve for a driven, damped oscillator with Q = 6, and show that the full width of the curve between the points corresponding to is approximately equal to ω0/6.arrow_forwardThe amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forward
- If the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forwardGive an example of a simple harmonic oscillator, specifically noting how its frequency is independent of amplitude.arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning