
Concept explainers
(a)
Interpretation:
The mass
Concept introduction:
Molar mass of a substance is defined as the mass of one mole of a chemical entity. It is calculated as the summation of product of
(a)

Answer to Problem 3.18P
The mass
Explanation of Solution
The formula ot calculate the molar mass of
Substitute
The expression to calculate mass
Substitute
The mass
(b)
Interpretation:
The mass
Concept introduction:
One mole is defined as the amount of substance that contains the same number of entities such as molecules, ions, atoms as the number of atoms in
Molar mass is defined as the mass of
Following are the steps to calculate the mass of a chemical substance when a number of molecules are given.
Step 1: Determine the amount of substance in moles by using Avogadro’s number. The expression to calculate the moles of a chemical substance is as follows:
Step 2: Multiply the moles with the molar mass of the chemical substance to obtain the mass of chemical substance in grams. The formula to calculate the mass of a substance in grams is as follows:
(b)

Answer to Problem 3.18P
The mass
Explanation of Solution
Dinitrogen pentoxide is an inorganic compound with chemical formula
The formula to calculate the molar mass of
Substitute
One mole of
The expression to calculate mass
Substitute
The mass
(c)
Interpretation:
The number of moles and formula unit in
Concept introduction:
One mole is defined as the amount of substance that contains the same number of entities such as molecules, ions, atoms as the number of atoms in
Molar mass is defined as the mass of
A formula unit is used for the ionic compound to represent their empirical formula. The steps to determine the formula unit of an ionic compound from the given mass are as follows:
Step 1: Divide the given mass of the ionic compound with the molar mass to calculate the moles. The expression to calculate the moles of an ionic compound when the mass is given is as follows:
Step 2: Multiply the calculated moles with the Avogadro’s number to determine the formula units of an ionic compound. The expression to determine the formula unit is as follows:
(c)

Answer to Problem 3.18P
The number of moles and formula unit in
Explanation of Solution
Sodium perchlorate is an ionic compound with chemical formula
The formula to calculate the molar mass of
Substitute
The expression to calculate moles of
Substitute
The expression to calculate formula units (FU) of
Substitute
The number of moles and formula unit in
(d)
Interpretation:
The number of sodium ions, perchlorate ions, chlorine atoms and oxygen atoms in the mass of compound
Concept introduction:
A formula unit is used for the ionic compound to represent their empirical formula. The molecular formula of a compound tells the number of atoms/ions of each element present in the compound.
Number of ions in a chemical compound is directly linked to the formula unit of the compound.
(d)

Answer to Problem 3.18P
The number of sodium ions, perchlorate ions, chlorine atoms are
Explanation of Solution
From the formula of
The expression to calculate the number of ions/atoms in
Substitute
Substitute
Substitute
Substitute
The number of sodium ions, perchlorate ions, chlorine atoms are
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry: The Molecular Nature of Matter and Change (Looseleaf)
- 1. Arrange the following in order of increasing bond energy (lowest bond energy first, highest bond energy last). Provide your rationale. C=C, C-F, C=C, C-N, C-C List the bond order for each example.arrow_forwardWhat is the major enolate formed when treated with LDA? And why that one?arrow_forward4. Calculate the total number of sigma bonds and total number of pi bonds in each of the following compounds. a. HH :D: +1 I H-N-C-C-O-H I H b. HH H Н :N=C-C-C=C-CEC-H :0: total o H-C-H H-C = `C-H I H. 11 H-C = C= CH H total o total π total π 1 Harrow_forward
- In the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJarrow_forwardIndicate the processes in the dismutation of Cu2O.arrow_forward1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Potential Energy (kJ) 600 400 200 0 -200- -400 -600- -800 (i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s) (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) Ea = 1550 kJ Ea = 2240 kJ (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2350 kJ AH=-950 kJ ΔΗ = 575 ΚΙ AH=-825 kJ a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ Reaction Progress b. What is the overall chemical equation? c. What is the overall change in enthalpy for the above chemical reaction? d. What is the overall amount of activation energy for the above chemical reaction? e. Which reaction intermediate would be considered a catalyst (if any) and why? f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would you be able to make the reaction reverse itself (i.e. have…arrow_forward
- draw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forwardDraw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forward
- Post Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forwardIndicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





