The maximum mass (kg) of Sodium azide that can be produced in the given reaction should be determined. Concept introduction: Mole: Number of atoms present in gram atomic mass of element is known as Avogadro number . Avogadro number is 6.022136 × 10 23 One mole equal of atom equal to Avogadro number ( 6.022136 × 10 23 ) hence, 1 mole of Iron (55 .9 g) contain atom 6.022136 × 10 23 Fe atoms. The mole of taken gram mass of compound is given by ratio between taken mass of compound to molar mass of compound. Mole = Mass Molar mass Limiting reagent: The mole of the product formed in the reaction is determined by the mole of one of the reactant, this reactant is known as limiting reagent. In the reaction, the limiting reagent is completely react to give a product. After completion of this reagent the reaction will stop.
The maximum mass (kg) of Sodium azide that can be produced in the given reaction should be determined. Concept introduction: Mole: Number of atoms present in gram atomic mass of element is known as Avogadro number . Avogadro number is 6.022136 × 10 23 One mole equal of atom equal to Avogadro number ( 6.022136 × 10 23 ) hence, 1 mole of Iron (55 .9 g) contain atom 6.022136 × 10 23 Fe atoms. The mole of taken gram mass of compound is given by ratio between taken mass of compound to molar mass of compound. Mole = Mass Molar mass Limiting reagent: The mole of the product formed in the reaction is determined by the mole of one of the reactant, this reactant is known as limiting reagent. In the reaction, the limiting reagent is completely react to give a product. After completion of this reagent the reaction will stop.
Solution Summary: The author explains that the maximum mass (kg) of Sodium azide that can be produced in the given reaction is determined by the mole of one of the reactant.
Predict the major organic product(s) of the following reactions. Indicate which of the following mechanisms is in operation: SN1, SN2, E1, or E2.
(c)
(4pts)
Mechanism:
heat
(E1)
CH3OH
+
1.5pts each
_E1 _ (1pt)
Br
CH3OH
(d)
(4pts)
Mechanism:
SN1
(1pt)
(e)
(3pts)
1111 I
H
10
Ill!!
H
LDA
THF (solvent)
Mechanism: E2
(1pt)
NC
(f)
Bri!!!!!
CH3
NaCN
(3pts)
acetone
Mechanism: SN2
(1pt)
(SN1)
-OCH3
OCH3
1.5pts each
2pts for either product
1pt if incorrect
stereochemistry
H
Br
(g)
“,、
(3pts)
H
CH3OH
+21
Mechanism:
SN2
(1pt)
H
CH3
2pts
1pt if incorrect
stereochemistry
H
2pts
1pt if incorrect
stereochemistry
A mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixture
Chapter 3 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY