. In January 2003, an 18-year-old student gained a bit of fame for surviving—with only minor injuries—a remarkable traffic accident. The vehicle he was driving was "clipped" by another one, left the road, and rolled several times. He was thrown upward from the vehicle (he wasn't wearing a seat belt) and ended up dangling from an overhead telephone cable and a ground wire about 8 meters above the ground. Rescuers got him down after 20 minutes. It is estimated that he reached a maximum height of about 10 meters.
(a) Estimate the driver's vertical speed when he was thrown from the vehicle.
(b) If he had not landed in the wires, how fast would he have been going when he hit the ground?

(a)
The driver’s vertical speed when he was thrown from the vehicle.
Answer to Problem 30P
The speed of the driver’s body when he was thrown from the vehicle is
Explanation of Solution
Given:
In January 2003, an 18 year old student gained a bit of fame for surviving- with only minor injuries-a remarkable traffic accident. The vehicle he was driving was “clipped” by another one, left the road, and rolled several times. He was thrown upward from the vehicle and ended up dangling from an overhead telephone cable and a ground wire about
Formula used:
Kinematic equation of motion states the following equation:
Where
Calculation:
From kinematic equation of motions, we get
We have
Substituting the values, we get
Conclusion:
Hence, the speed of the driver’s body when he was thrown from the vehicle is

(b)
If the driver had not landed in the wires, how fast would he have been going when he hit the ground?
Answer to Problem 30P
The speed of driver before hitting with the ground is
Explanation of Solution
Given:
Given that a person was thrown upward from the vehicle and ended up dangling from an overhead telephone cable and a ground wire about
Formula used:
Kinematic equation of motion states the following equation:
Where
Calculation:
From kinematic equation of motions, we get
We have
Substituting the values, we get
Thus, speed of driver before hitting with the ground is also
Conclusion:
Hence, the speed of driver before hitting with the ground is
Want to see more full solutions like this?
Chapter 3 Solutions
INQUIRY INTO PHYSICS-EBOOK
- Consider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- A particle in a box between x=0 and x=6 has the wavefunction Psi(x)=A sin(2πx). How muchenergy is required for the electron to make a transition to Psi(x)= A’ sin(7π x/3). Draw anapproximate graph for the wavefunction. Find A and A'arrow_forwardA proton is moving with 10^8 m/s speed. Find the De Broglie wavelength associated with theproton and the frequency of that wave.arrow_forwardFind the wavelength of the photon if a (Li--) electron makes a transition from n=4 to n=3. Findthe Bohr radius for each state.arrow_forward
- A photon with wavelength 3000 nm hits a stationary electron. After the collision electron isscattered to 60 degrees. Find the wavelength and frequency of the scattered photon.arrow_forwardA metal has threshold frequency 10^15. Calculate the maximum kinetic energy of the ejectedelectron if a laser beam with wavelength 1.5 10^-7 m is projected on the metal.arrow_forwardDetermine the direction of the vector V, B, or ♬ that is missing from the pair of vectors shown in each scenario. Here, u is the velocity vector of a moving positive charge, B is a constant and uniform magnetic field, and F is the resulting force on the moving charge. 1. 2. 3. B OB F 4. ↑F F 5. 怔 ↑ ↑F Answer Bank 6. ↑ TE Farrow_forward
- Two point charges (+9.80 nC and -9.80 nC) are located 8.00 cm apart. Let U=0 when all of the charges are separated by infinite distances. What is the potential energy if a third point charge q=-4.20 nC is placed at point b? 8.00 cm 8.00 cm 4.00 +4.00 +4.00- cm cm cm HJarrow_forward! Required information Two chloride ions and two sodium ions are in water, the "effective charge" on the chloride ions (CI¯) is −2.00 × 10-21 C and that of the sodium ions (Na+) is +2.00 x 10-21 C. (The effective charge is a way to account for the partial shielding due to nearby water molecules.) Assume that all four ions are coplanar. CT Na+ Na+ 30.0° 45.0% с сг L. where a = 0.300 nm, b = 0.710 nm, and c = 0.620 nm. What is the direction of electric force on the chloride ion in the lower right-hand corner in the diagram? Enter the angle in degrees where positive indicates above the negative x-axis and negative indicates below the positive x-axis.arrow_forwardA pendulum has a 0.4-m-long cord and is given a tangential velocity of 0.2 m/s toward the vertical from a position 0 = 0.3 rad. Part A Determine the equation which describes the angular motion. Express your answer in terms of the variable t. Express coefficients in radians to three significant figures. ΜΕ ΑΣΦ vec (t)=0.3 cos (4.95t) + 0.101 sin (4.95t) Submit Previous Answers Request Answer × Incorrect; Try Again; 6 attempts remainingarrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





