Operations Management: Processes and Supply Chains, Student Value Edition Plus MyLab Operations Management with Pearson eText -- Access Card Package (11th Edition)
11th Edition
ISBN: 9780134111056
Author: Lee J. Krajewski, Manoj K. Malhotra, Larry P. Ritzman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 2P
Summary Introduction
To calculate:
Use the table below,Establish control limits for sample mean and ranges for the car wash process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At Isogen Pharmaceuticals, the filling process for its asthma inhaler is set to dispense
140 milliliters (ml) of steroid solution per container. The average range for a sample of 3 containers is 4 ml. use the accompanying table to establish control limits for sample means and ranges for the filling process.
x-chart
and R-chart
Size of Sample (n)
Factor for UCL and LCL for
x-chart
(A2)
Factor for LCL for R-Chart
(D3)
Factor for UCL for R-Chart
(D4)
2
1.880
0
3.267
3
1.023
0
2.575
4
0.729
0
2.282
5
0.577
0
2.115
6
0.483
0
2.004
7
0.419
0.076
1.924
8
0.373
0.136
1.864
9
0.337
0.184
1.816
10
0.308
0.223
1.777
The
UCLR
equals
to what
ml and the
LCLR
equals
to what
ml. (Enter your responses rounded to two decimal places.)
The
UCLx
equals
to what
ml and the
LCLx
is what
ml. (Enter your responses rounded to two decimal places.)
Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor
that must be controlled. From sample sizes of 5 pistons produced each day, the mean and the range of this diameter have
been as follows:
Day
Mean (mm)
Range R (mm)
158
4.3
151.2
4.4
155.7
4.2
153.5
4.8
156.6
4.5
What is the UCL using 3-sigma?(round your response to two decimal places).
1.
2.
4.
A. Choudhury’s bowling ball factory in Illinois makes
bowling balls of adult size and weight only. The standard devia-tion in the weight of a bowling ball produced at the factory is
known to be 0.12 pounds. Each day for 24 days, the averageweight, in pounds, of nine of the bowling balls produced that dayhas been assessed as follows:
a) Establish a control chart for monitoring the average weights
of the bowling balls in which the upper and lower control lim-its are each two standard deviations from the mean. What are
the values of the control limits?b) If three standard deviations are used in the chart, how do thesevalues change? Why?
Chapter 3 Solutions
Operations Management: Processes and Supply Chains, Student Value Edition Plus MyLab Operations Management with Pearson eText -- Access Card Package (11th Edition)
Ch. 3 - Should a very pricey handcrafted object of beauty...Ch. 3 - Prob. 2DQCh. 3 - Prob. 3DQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7P
Ch. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 31PCh. 3 - Prob. 1AMECh. 3 - Prob. 2AMECh. 3 - Prob. 3AMECh. 3 - Prob. 4AMECh. 3 - Prob. 5AMECh. 3 - Prob. 1VCCh. 3 - Prob. 2VCCh. 3 - Prob. 3VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- At Quick Car Wash, the wash process is advertised to take less than 8 minutes. Consequently, management has set a target average of 440 seconds for the wash process. Suppose the average range for a sample of 9 cars is 10 seconds. Use the accompanying table to establish control limits for sample means and ranges for the car wash process. Factors for calculating three-sigma limits for the x-chart and R-chart Size of Sample (n) Factor for UCL and LCL for x-chart (A2) Factor for LCL for R-Chart (D3) Factor for UCL for R-Chart (D4) 2 1.880 0 3.267 3 1.023 0 2.575 4 0.729 0 2.282 5 0.577 0 2.115 6 0.483 0 2.004 7 0.419 0.076 1.924 8 0.373 0.136 1.864 9 0.337 0.184 1.816 10 0.308 0.223 Part 2 The UCLR equals enter your response here seconds and the LCLR equals enter your response here seconds. (Enter your responses rounded to two decimal places.)arrow_forwardA microbrewery tracks its output in gallons over a five hour period for each of seven days. Their data is in the table below, and they went ahead and calculated the averages and ranges for the individual samples and the overall averages Their data and the factors tables can be found below. Calculate the upper (LCL) and lower (UCL) control limits for X bar, and R charts for their process. Day (X values) X̅ R 1 46 49 45 47 48 47.0 4 2 43 52 46 52 44 47.4 9 3 45 55 46 51 43 48.0 12 4 39 44 42 43 40 41.6 5 5 45 50 48 50 42 47.0 8 6 44 48 45 45 40 44.4 8 7 41 44 52 50 47 46.8 11 X̿ = 46.03 R̅ 8.14 Xbar chart - LCL = 40.48, UCL=46.25, R chart LCL=0, UCL=14.01 Xbar chart - LCL = 44.21, UCL=48.41, R chart LCL=0.49, UCL=17.18 Xbar chart - LCL = 42.61, UCL=49.45, R chart LCL=0.65, UCL=15.63 Xbar chart - LCL = 44.21, UCL=51.62, R chart LCL=0, UCL=17.18 Xbar chart - LCL = 41.31, UCL=50.75, R chart LCL=0, UCL=17.18arrow_forward3.2. The Road King Tire Company in Birmingham wants to moni- tor the quality of the tires it manufactures. Each day the company quality-control manager takes a sample of 100 tires, tests them, and determines the number of defective tires. The results of 20 samples have been recorded as follows: Number of Number of Sample Defectives Sample Defectives 1 14 11 18 12 12 10 9. 13 19 10 14 20 11 15 17 7 16 18 7 8 17 18 8 14 18 22 9. 16 19 24 10 17 20 23 3. 4,arrow_forward
- An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approximately normal with a mean of 1.0 liter and standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97% of the sample means when the process is in control. Using Appendix B, Table A to find the value of Z corresponding to the mean control limits.arrow_forwardManagement at Webster Chemical Company is concerned as to whether caulking tubes are being properly capped. If a significant proportion of the tubes are not being sealed, Webster is placing its customers in a messy situation. Tubes are packaged in large boxes of 135. Several boxes are inspected, and the following numbers of leaking tubes are found: View an example Sample 1 2 3 Get more help. 4 Tubes 7 7 8 5 1 5 6 7 Calculate p-chart three-sigma control limits to assess whether the capping process is in statistical control. The UCL, equals 1 Sample 8 8 9 10 11 12 13 14 Tubes 7 2 4 8 6 9 MacBook Pro 3 Sample 15 16 17 18 19 20 Total Tubes 8 3 3 5 and the LCL equals (Enter your responses rounded to three decimal places. If your answer for LCL, is negative, enter this value as 0.) 3 6 104 Clear all Check answer Oarrow_forward2- Quality Control Charts A local brewery and bottling plant wants to keep track of the bottling filling equipment's accuracy, Bottles are to be filled with exactly 16 ounces of the drink. The following is data from the bottling equipment where 5 samples of bottles filled were pulled every hour and measured for actual quantity filled. 1- Calculate the UCL, LCL and mean for the X-bar and R data 2- Draw an X-Bar chart and a R chart. 3- Is this filling process in control or out of control? Hour X-bar R 1 16.05 .20 2 16.03 3 15.96 4 15.97 16.03 16.06 15.98 16.09 15.94 16.01 5 6 7 8 9 10 @n-5: A2 = 0.58, D3 =0, D4 = 2.11 .25 .62 .58 .71 .37 .46 .21 .35 .29arrow_forward
- Suppose you constructed control charts for the time spent by customers in a retail checkout lane, computing UCL, CL, and LCL based upon a large number of historical observations. Using those control limits, you decide to plot the most recent 12 data points as shown below. Given the following range chart, which general conclusion is most appropriate? (link to image here). Range Chart Sample Range 140 120 100 80 60 40 20 0 1 2 3 4 5 6 7 Sample Number 8 The process is capable The process is not capable The process is in control The process is out of control 9 10 11 12arrow_forwardA bottle-filling process has a lower specification limit of 0.99 liter and an upperspecification limit of 1.01 liters. The standard deviation is 0.005 liter and the mean is 1 liter.What is the process capability index for the bottle-filling process?arrow_forwardThe Road King Tire Company in Birmingham wants to moni-tor the quality of the tires it manufactures. Each day the com-pany quality-control manager takes a sample of 100 tires, tests them, and determines the number of defective tires. The re-sults of 20 samples have been recorded as follows:Construct a p-chart for this process using 2 limits and for each of the last 30 weekdays are shown as follows:describe the variation in the process. Sample Defectives Sample Defectives1 14 11 182 12 12 103 9 13 194 10 14 205 11 15 176 7 16 187 8 17 188 14 18 229 16 19 2410 17 20 23arrow_forward
- A company making tires for bikes is concerned about the exact width of its cyclocrosstires. The company has a lower specification limit of 22.8 mm and an upper specification limit of 23.2 mm. The standard deviation is 0.15 mm and the mean is 23 mm.What is the process capability index for the process?arrow_forwardconcernedas to whether caulking tubes are being properly capped. Ifa significant proportion of the tubes are not being sealed,Webster is placing its customers in a messy situation.Tubes are packaged in large boxes of 144. Several boxes areinspected, and the following numbers of leaking tubes arefound: Calculate p-chart three-sigma control limits to assesswhether the capping process is in statistical control.arrow_forwarddiscuss how to construct process control chart and use them to determine whether a process is out of statistical control?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.