
The Physical Universe
15th Edition
ISBN: 9780073513928
Author: Konrad Krauskopf, Arthur Beiser
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 27MC
The highest MA that can be obtained by a system of two pulleys is
- a. 2
- b. 3
- c. 4
- d. 5
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic
energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest.
]
37°
A
©
B
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Chapter 3 Solutions
The Physical Universe
Ch. 3 - Which of the following is not a unit of work? a....Ch. 3 - An object at rest may have a. velocity b. momentum...Ch. 3 - A moving object must have which one or more of the...Ch. 3 - When the momentum of a moving object is increased,...Ch. 3 - The total amount of energy (including the rest...Ch. 3 - When the speed of a moving object is halved, a....Ch. 3 - Two balls, one of mass 5 kg and the other of mass...Ch. 3 - A bomb dropped from an airplane explodes in...Ch. 3 - The operation of a rocket is based upon a. pushing...Ch. 3 - A spinning skater whose arms are at her sides then...
Ch. 3 - Prob. 11MCCh. 3 - The formula 12 mv2 for kinetic energy a. is the...Ch. 3 - A spacecraft has left the earth and is moving...Ch. 3 - The upper limit to the speed of an object with...Ch. 3 - It is not true that a. light is affected by...Ch. 3 - Albert Einstein did not discover that a. the...Ch. 3 - The work done in holding a 50-kg object at a...Ch. 3 - The work done in lifting 30 kg of bricks to a...Ch. 3 - A total of 4900 J is used to lift a 50-kg mass....Ch. 3 - The work a 300-W electric grinder can do in 5.0...Ch. 3 - A 150-kg yak has an average power output of 120 W....Ch. 3 - A 40-kg boy runs up a flight of stairs 4 m high in...Ch. 3 - Car A has a mass of 1000 kg and is moving at 60...Ch. 3 - A 1-kg object has a potential energy of 1 J...Ch. 3 - A 1-kg object has kinetic energy of 1 J when its...Ch. 3 - The 2-kg blade of an ax is moving at 60 m/s when...Ch. 3 - The highest MA that can be obtained by a system of...Ch. 3 - A machine has a MA of 6.0. The work input needed...Ch. 3 - A person uses a force of 300 N to pry up one end...Ch. 3 - A 1-kg ball is thrown in the air. When it is 10 m...Ch. 3 - A 10,000-kg freight car moving at 2 m/s collides...Ch. 3 - A 30-kg girl and a 25-kg boy are standing on...Ch. 3 - An object has a rest energy of 1 J when its mass...Ch. 3 - The smallest part of the total energy of the ball...Ch. 3 - The lightest particle in an atom is an electron,...Ch. 3 - A person holds a 10-kg package 1.2 m above the...Ch. 3 - Under what circumstances (if any) is no work done...Ch. 3 - The sun exerts a gravitational force of 4.0 1028...Ch. 3 - A crate is pushed across a horizontal floor at...Ch. 3 - A total of 490 J of work is needed to lift a body...Ch. 3 - A woman eats a cupcake and proposes to work off...Ch. 3 - The acceleration of gravity on the surface of Mars...Ch. 3 - The kilowatt-hour is a unit of what physical...Ch. 3 - The motor of a boat develops 60 kW when the boats...Ch. 3 - How much power must the legs of a 70-kg man...Ch. 3 - A weightlifter raises a 70-kg barbell from the...Ch. 3 - An escalator 14 m long is carrying a 70-kg person...Ch. 3 - A 700-kg horse whose power output is 1.0 hp is...Ch. 3 - A persons metabolic processes can usually operate...Ch. 3 - A crane whose motor has a power input of 5.0 kW...Ch. 3 - A total of 104 kg of water per second flows over a...Ch. 3 - Which of these energies might correspond to the KE...Ch. 3 - What is the speed of an 800-kg car whose KE is 250...Ch. 3 - A moving object whose initial KE is 10 J is...Ch. 3 - Is the work needed to bring a cars speed from 0 to...Ch. 3 - A 1-kg salmon is hooked by a fisherman and it...Ch. 3 - Prob. 22ECh. 3 - How long will it take a 1000-kg car with a power...Ch. 3 - Does every moving body possess kinetic energy?...Ch. 3 - As we will learn in Chap. 6, electric charges of...Ch. 3 - A 60-kg woman jumps off a wall 80 cm high and...Ch. 3 - Why does a nail become hot when it is hammered...Ch. 3 - A 3-kg stone is dropped from a height of 100 m....Ch. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - A ball is dropped from a height of 1 m and loses...Ch. 3 - A person sitting under a coconut palm is struck by...Ch. 3 - A skier is sliding downhill at 8 m/s when she...Ch. 3 - A force of 10 N is used to lift a 600-g ball from...Ch. 3 - A person uses a force of 49 N to raise a 30-kg...Ch. 3 - Prob. 36ECh. 3 - The human forearm is a class III lever. Find the...Ch. 3 - A ramp 20 m long slopes down 1.2 m to the edge of...Ch. 3 - In an effort to lose weight, a person runs 5 km...Ch. 3 - An 80-kg crate is raised 2 m from the ground by a...Ch. 3 - An 800-kg car coasts down a hill 40 m high with...Ch. 3 - (a) When an object at rest explodes into two parts...Ch. 3 - A golf ball and a Ping-Pong ball are dropped in a...Ch. 3 - Is it possible for an object to have more kinetic...Ch. 3 - What happens to the momentum of a car when it...Ch. 3 - The speed of an airplane doubles in flight. (a)...Ch. 3 - When the kinetic energy of an object is doubled,...Ch. 3 - What, if anything, happens to the speed of a...Ch. 3 - A ball of mass m rolling on a smooth surface...Ch. 3 - A railway car is at rest on a frictionless track....Ch. 3 - An empty dump truck coasts freely with its engine...Ch. 3 - A boy throws a 4-kg pumpkin at 8 m/s to a 40-kg...Ch. 3 - A 30-kg girl who is running at 3 m/s jumps on a...Ch. 3 - A 70-kg man and a 50-kg woman are in a 60-kg boat...Ch. 3 - The 176-g head of a golf club is moving at 45 m/s...Ch. 3 - A 40-kg skater moving at 4 m/s overtakes a 60-kg...Ch. 3 - The two skaters of Exercise 56 are moving in...Ch. 3 - A 1000-kg car moving east at 80 km/h collides...Ch. 3 - As the polar ice caps melt, the length of the day...Ch. 3 - All helicopters have two rotors. Some have both...Ch. 3 - The earthquake that caused the Indian Ocean...Ch. 3 - What are the two postulates from which Einstein...Ch. 3 - The theory of relativity predicts a variety of...Ch. 3 - What physical quantity will all observers always...Ch. 3 - The length of a rod is measured by several...Ch. 3 - Under what circumstances does it become...Ch. 3 - Why is it impossible for an object to move faster...Ch. 3 - The potential energy of a golf ball in a hole is...Ch. 3 - What is the effect on the law of conservation of...Ch. 3 - A certain walking person uses energy at an average...Ch. 3 - One kilogram of water at 0C contains 335 kJ of...Ch. 3 - When 1 g of gasoline is burned in an engine, about...Ch. 3 - Approximately 5.4 106 J of chemical energy is...Ch. 3 - Approximately 4 109 kg of matter is converted...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forwardPhysics different from a sea breeze from a land breezearrow_forward
- File Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forwardOk im confused on this portion of the questions being asked. the first snip is the solution you gave which is correct. BUt now it is asking for this and im confused. The magnitude of the force F_11 is __________LB. The direction of the force F_11 is __________LB.arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work-Energy Theorem | Physics Animation; Author: EarthPen;https://www.youtube.com/watch?v=GSTW7Mlaoas;License: Standard YouTube License, CC-BY