CONCEPT. INTEG. SCI. -ACCESS W/ ETEXT
3rd Edition
ISBN: 9780135626566
Author: Hewitt
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 26TIS
What is gliding locomotion?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel
through the center of the circle?
The path
after string
is cut
R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic
surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on
the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of
static friction between the bag and the carousel.
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N
(b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a
position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the
coefficient of static friction between the bag and the carousel.
Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative
to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other
planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.)
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your
calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s
(b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational
slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on
Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of
4.10 x 10 m/s relative…
Chapter 3 Solutions
CONCEPT. INTEG. SCI. -ACCESS W/ ETEXT
Ch. 3 - What is Newtons first law of motion?Ch. 3 - What kind of path would the planets follow if...Ch. 3 - aExpress Newtons second law of motion in words....Ch. 3 - aIs acceleration directly proportional to force,...Ch. 3 - If the mass of a sliding block is tripled at the...Ch. 3 - What is the acceleration of a 10-N feely falling...Ch. 3 - Why doesnt a heavy object accelerate more than a...Ch. 3 - What is the acceleration of a falling object that...Ch. 3 - What two quantities affect air resistance?Ch. 3 - Who falls faster when wearing the same-size...
Ch. 3 - How many forces are required for a single...Ch. 3 - When you push against a wall with your fingers,...Ch. 3 - A boxer can hit a heavy bag with a great force....Ch. 3 - What is Newtons third law of motion?Ch. 3 - If we call the force of a bat hitting a ball the...Ch. 3 - Do action and reaction forces act in succession or...Ch. 3 - If the forces that act on the cannonball and the...Ch. 3 - What is needed to accelerate a system?Ch. 3 - Cite three examples of a vector quantity. Then...Ch. 3 - What is the resultant of two equal-magnitude...Ch. 3 - According to the parallelogram rule, what does the...Ch. 3 - Can it be said that, when two vectors are at right...Ch. 3 - What change in magnitude occurs for the vertical...Ch. 3 - Newtons laws of motion are valid for most our...Ch. 3 - Does Hudsons speed undergo a change when tossed...Ch. 3 - What is gliding locomotion?Ch. 3 - Why is having a large surface area important for...Ch. 3 - Describe some of the physical characteristics that...Ch. 3 - Explain how Newtons third law underlies many form...Ch. 3 - A squid propels itself forward by pushing water...Ch. 3 - When you walk, what is the force that pushes you...Ch. 3 - Why does a duck in an oil spill find it difficult...Ch. 3 - In Chapter 2, acceleration is defined asa=v/t. Use...Ch. 3 - In this chapter, we learned that the cause of...Ch. 3 - If you know that1kgobject weighs10N, confirm that...Ch. 3 - A simple rearrangement of Newtons second law...Ch. 3 - Four boxes of different masses are on a friction...Ch. 3 - Prob. 42TCCh. 3 - Three parachutists, A, B and C, each have reached...Ch. 3 - In cases A, B and C, the crate is in...Ch. 3 - The strong man is pulled in the three situations...Ch. 3 - One pound is the same as 4.45 newtons. What is the...Ch. 3 - If Lillian weighs 500 N, what is her weight in...Ch. 3 - Consider a mass of 1kg accelerated 1m/s2by a force...Ch. 3 - Consider a business jet of mass 30,000kgin takeoff...Ch. 3 - Alex, who has a mass of 100kg, is skateboarding at...Ch. 3 - A boxer punches a sheet of paper and mid-air...Ch. 3 - Suppose that you are standing on a skateboard near...Ch. 3 - If raindrops fall vertically at a speed of 3m/sand...Ch. 3 - Horizontal forces of 3N and 4N act at right angles...Ch. 3 - An aeroplane with a speed of 120km/h encounters a...Ch. 3 - In the orbiting Space Shuttle, you are handed two...Ch. 3 - Your empty hand is not hurt when it bang lightly...Ch. 3 - On a long alley, a bowling ball slows down as it...Ch. 3 - If a motorcycle moves with constant velocity, can...Ch. 3 - Since an object weighs less on the surface of Moon...Ch. 3 - Does the mass of an astronaut change when he or...Ch. 3 - Why is a massive cleaver more effective for...Ch. 3 - Neglecting air resistance, if you drop an object,...Ch. 3 - Can you think of a reason why the acceleration of...Ch. 3 - A feather and coin accelerate equally when dropped...Ch. 3 - On which of these hills does the ball roll down...Ch. 3 - At what stage in a parachute jump are velocity and...Ch. 3 - How does the weight of falling body cmpare with...Ch. 3 - Free fall is a motion in which gravity is the only...Ch. 3 - Why is it that a cat that falls from the top of a...Ch. 3 - You tell your friend that the acceleration of a...Ch. 3 - First we say that force is push or pull. Now we...Ch. 3 - We know that the Sun pulls on the planets. Does it...Ch. 3 - A friend says that Al cannot push on the tree...Ch. 3 - When you stand at rest on a floor, does the floor...Ch. 3 - When you pull on a rope, what pulls on you? If the...Ch. 3 - The strong man will push apart the two initially...Ch. 3 - Consider that two carts, one twice as massive as...Ch. 3 - When the athlete pushes upward to hold the barbell...Ch. 3 - Note the two forces acting on the man standing at...Ch. 3 - Regarding the orange-apple system discussed in the...Ch. 3 - The photo shows Steve Hewitt and his daughter...Ch. 3 - Nellie tosses a ball at an angle upward. What...Ch. 3 - A block is at rest in positions A, B and C. The...Ch. 3 - Which is more likely to break - the rope...Ch. 3 - Refer to Monkey Mo in Figure 3.32. If the rope...Ch. 3 - Refer to Monkey Mo in Figure 3.32. What will be...Ch. 3 - You exert a force on the ball when you toss it...Ch. 3 - Why does a rocket become progressively easier to...Ch. 3 - Which team wins in a tug-of-war: the team that...Ch. 3 - A boulder dropped from the roof of your school...Ch. 3 - Your friend says that when you step off a table,...Ch. 3 - Is Newtons third law applied inappropriately by a...Ch. 3 - The auto in the sketch moves forward as the brakes...Ch. 3 - Your instructor challenges you and your friend to...Ch. 3 - Two 100N weights are attached to a spring scale as...Ch. 3 - Each of the vertebrae forming your spine is...Ch. 3 - A common saying is, Its not the fall that hurts...Ch. 3 - Does a stick of dynamite contain force? Discuss...Ch. 3 - Can a dog wag its tail without the tail in turn...Ch. 3 - When air drag build up to equal the combined...Ch. 3 - If you simultaneously drop a pair of tennis balls...Ch. 3 - A friend says that if the acceleration of little...Ch. 3 - A boxer hits his equal-weight opponent with his...Ch. 3 - Using Figure 3.14 as a guide, do you agree with...Ch. 3 - If an object moves along a curved path, then it...Ch. 3 - As mass is added to a car pushed by a constant...Ch. 3 - A ball rolls down a curved ramp as shown. As its...Ch. 3 - A heavy rock and a light rock in a free fall zero...Ch. 3 - You drop a pillow off the edge of the tallest...Ch. 3 - A karate chop delivers a force of 3000 N to a...Ch. 3 - Two parachutists, a heavy person and a light...Ch. 3 - The amount of air resistance that acts on a...Ch. 3 - When you push an ice cube with a 0.5_N force, the...Ch. 3 - The force that propels a rocket is provided by:...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
5.4 Genes E and H are syntenic in an experimental organism with the genotype . Assume
that during each meiosis,...
Genetic Analysis: An Integrated Approach (3rd Edition)
Of the following statements about protected areas that have been established to preserve biodiversity, which on...
Campbell Biology (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
58. Is each compound soluble or insoluble? For the soluble compounds, identify the ions present in solution.
a....
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction. i (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary: g.) h = (b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.) NB - NT = The normal force…arrow_forwardOne of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. i The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is…arrow_forwardOne popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. Pulp Motor Spinning basket Juice spout (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? m/s² ---Direction--- (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
- A spring with unstretched length of 14.3 cm has a spring constant of 4.63 N/m. The spring is lying on a horizontal surface, and is attached at one end to a vertical post. The spring can move freely around the post. The other end of the spring is attached to a puck of mass m. The puck is set into motion in a circle around the post with a period of 1.32 s. Assume the surface is frictionless, and the spring can be described by Hooke's law. (a) What is the extension of the spring as a function of m? (Assume x is in meters and m is in kilograms. Do not include units in your answer.) x = Your answer cannot be understood or graded. More Information x Find x (in meters) for the following masses. (If not possible, enter IMPOSSIBLE.) (b) m = 0.0700 kg x Use your result from part (a), and insert the given value for m. m (c) m 0.140 kg × Use your result from part (a), and insert the given value for m. m (d) m = 0.180 kg x Use your result from part (a), and insert the given value for m. m (e) m =…arrow_forwardA spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 860 kg. It has strayed too close to a black hole having a mass 98 times that of the Sun. The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. 100 m- 10.0 km Black hole (a) Determine the total force on the spacecraft. The total force is determined by the distance from the black hole to the center of gravity of the ship which will be close to the midpoint. N (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in acceleration grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.) N/kg 2.56e+12arrow_forwardQ1: Find the volume of the object shown to the correct number of significant figures. ( 22.37 cm 9.10 cm 85.75 cm Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year, what is this speed in SI units? ( Q3: Suppose a well known professor Raitman discovers Raitman's Law which states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are displacement, velocity, acceleration, and time, respectively? (arrow_forward
- Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below. This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…arrow_forwardQ6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain attempts to cross the river in his ferry at right angles to the bank but by the time it has reached the opposite bank the captain awakes and notices that it is 1.0 km downstream. If the captain wishes to take his boat directly across, what angle upstream must he point the boat assuming the boat speed remains the same? ( Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from above) at a constant speed of 8 m s-1. From an instant when the stopper is moving in a northerly direction, find its change in velocity after moving round (a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a revolution.arrow_forwardQ9: When a wedding ring is thrown horizontally out of a fifth-floor window 15 m off the ground, it lands 7.5 m out from the base of the building. Calculate the throwing speed; (a) (b) the impact velocity; (c) how long the marriage will last. Q10: A girl on a sled with a combined mass of 50.0- kg slides down a frictionless hill from rest. When she gets to the bottom of the hill, she is traveling at 3.00 m/s. How high is the hill?" m = 50.0 kg HILL v, 3.00 m/s ■ 0 (ground)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY