
Concept explainers
a. | How would you describe inheritance of flower color? Describe how specific alleles influence each other and therefore affect |
b. | A white F2 plant is allowed to self-fertilize. Of the progeny, 3/4 are white-flowered, and 1/4 are purple-flowered. What is the genotype of the white F2 plant? |
c. | A purple F2 plant is allowed to self-fertilize. Of the progeny, 3/4 are purple-flowered, and 1/4 are white flowered. What is the genotype of the purple F2 plant? |
d. | Two white F2 plants are crossed with each other. Of the progeny, 1/2 are purple-flowered, and 1/2 are white-flowered. What are the genotypes of the two white F2 plants? |
Two true-breeding white strains of the plant Illegitimati noncarborundum were mated, and the F progeny were all white. When the F plants were allowed to self-fertilize, 126 white-flowered and 33 purple-flowered F plants grew.

a.
To determine:
The inheritance of white colored flowers in the plant Illegitimati noncarborundum along with the description of the influence of alleles on each other and the effect on the phenotype of the plant.
Introduction:
The cross between white strains of plant Illegitimati noncarborundum results in the production of white colored flowers in the F1 generation. The self cross between offsprings of F1 generation produces 126 offsprings with white flowers and 33 offsprings with purple flowers.
Explanation of Solution
Let the genotype of white flowers of F1 generation be AABB and aabb respectively. The cross between AABB and aabb is as follows:
AB | Ab | aB | ab | |
AB | AABB (White) |
AABb (White) |
AaBB (White) |
AaBb (White) |
Ab | AABb (White) |
AAbb (White) |
AaBb (White) |
Aabb (White) |
aB | AaBB (White) |
AaBb (White) |
aaBB (Purple) |
aaBb (Purple) |
ab | AaBb (White) |
Aabb (White) |
aaBb (Purple) |
Aabb (White) |
The phenotypic ratio of flower color is as follows:
• White flowers with alleles A and B =
• White flowers with alleles a and b =
• White colored flower with alleles A and b=
• Purple colored flower with alleles B and a=
It can be observed that the phenotypic ratio of the F2 generation is 13:3. This implies that A is epistatic over B resulting in 3 flowers with alleles A and b to be white whereas flowers with alleles B and a to be purple. It indicates that the presence of dominant allele A masks the effect of other alleles resulting in the production of white colored flowers. Therefore, the inheritance pattern is found to be dominant epistasis.

b.
To determine:
The genotype of white F2 plants which produced offsprings with 3 out of 4 flowers as white and 1 out of 4 as purple.
Introduction:
Epistasis is a phenomenon in which one gene suppresses the expression of other genes. The gene suppressing the effect of other genes can be a dominant gene as well as recessive gene.
Explanation of Solution
According to the given information, the cross between a white F2 plant produces 3/4 white flowers and 1/4 purple flowers. Let us assume the genotype of white parent plants to be AaBB.
The cross between AaBB and AaBB is as follows:
AB | AB | aB | aB | |
AB | AABB (White) |
AABB (White) |
AaBB (White) |
AaBB (White) |
AB | AABB (White) |
AABB (Unknown) |
AaBB (White) |
AaBB (White) |
aB | AaBB (White) |
AaBB (White) |
aaBB (Purple) |
aaBB (Purple) |
aB | AaBB (White) |
AaBB (White) |
aaBB (Purple) |
aaBB (Purple) |
The phenotypic ratio of flower color is as follows:
• White flowers =
• Purple flowers =
The cross depicts that the assumption about parent plants having heterozygous alleles is correct. The ratio of 3:1 would be produced if the parents have genotype consisting of an amalgamation of the homozygous and heterozygous gene. Since A is epistatic over B, then all the offsprings having dominant A would produce white flowers. Therefore, the genotype of parent plant with white flowers is AaBB.

c.
To determine:
The genotype of purple F2 plant which produced offsprings with 3 out of 4 flowers as purple and 1 out of 4 as white.
Introduction:
Epistasis is a phenomenon which affects the expression of genes. If dominant allele of one gene suppresses other genes, then it is known as dominant epistasis. On the contrary, if recessive allele of one gene suppresses other genes, then it is known as recessive epistasis.
Explanation of Solution
According to the given information, the cross between white F2 plant produces 3/4 purple flowers and 1/4 white flowers. Let us assume the genotype of white parent plants to be aaBb.
The cross between aaBb and aaBb is as follows:
aB | ab | aB | ab | |
aB | aaBB (Purple) |
aaBb (Purple) |
aaBB (Purple) |
aaBb (Purple) |
ab | aaBb (Purple) |
aabb (White) |
aaBb (Purple) |
aabb (White) |
aB | aaBB (Purple) |
aaBb (Purple) |
aaBB (Purple) |
aaBb (Purple) |
ab | aaBb (Purple) |
aabb (white) |
aaBb (Purple) |
aabb (White) |
The phenotypic ratio of flower color is as follows:
• Purple flowers =
• White flowers =
The cross depicts that the assumption about parent plants having heterozygous alleles is correct. The ratio of 3:1 would be produced if the parents have genotype consisting of an amalgamation of homozygous and heterozygous gene. Since A is epistatic over B, then all the offsprings having dominant B and recessive a would produce purple flowers. Therefore, the genotype of parent plant with purple flowers is aaBB.

d.
To determine:
The genotype of two white F2 plants which produced offsprings with the phenotypic ratio of white and purple flowers as 1/2.
Introduction:
Genes are present on chromosomes. Each gene is responsible for the expression of a specific phenotype. The expression of genes in the progeny is known as phenotype, whereas the gene set which is responsible for a particular phenotype is known as genotype.
Explanation of Solution
According to the given information, the cross between two white F2 plant produces 1/2 purple flowers and 1/2 white flowers. Let us assume the genotype of one parent as aabb and another parent plant as AaBB.
The cross between aabb and AaBB is as follows:
ab | ab | ab | ab | |
AB | aAbB (White) |
aAbB (White) |
aAbB (White) |
aAbB (White) |
aB | aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
AB | aAbB (White) |
aAbB (White) |
aAbB (White) |
aAbB (White) |
aB | aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
The phenotypic ratio of flower color is as follows:
• Purple flowers =
• White flowers =
The cross depicts that the assumption about one parent having homozygous alleles and other parents having combination of homozygous and heterozygous gene is correct. The ratio of 1:1 would be produced. Therefore, the genotype of one parent plant with white flowers is aabb, and another parent plant with white flowers is AaBb.
Want to see more full solutions like this?
Chapter 3 Solutions
EBK GENETICS: FROM GENES TO GENOMES
- What is this?arrow_forwardMolecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank youarrow_forwardMolecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank youarrow_forward
- Molecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this. Please help. Thank youarrow_forwardMolecular Biology Question Please help. Thank you Explain what is meant by the term “defective virus.” Explain how a defective virus is able to replicate.arrow_forwardMolecular Biology Explain why changing the codon GGG to GGA should not be harmful. Please help . Thank youarrow_forward
- Stage Percent Time in Hours Interphase .60 14.4 Prophase .20 4.8 Metaphase .10 2.4 Anaphase .06 1.44 Telophase .03 .72 Cytukinesis .01 .24 Can you summarize the results in the chart and explain which phases are faster and why the slower ones are slow?arrow_forwardCan you circle a cell in the different stages of mitosis? 1.prophase 2.metaphase 3.anaphase 4.telophase 5.cytokinesisarrow_forwardWhich microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum explain your answer thoroughly.arrow_forward
- Select all of the following that the ablation (knockout) or ectopoic expression (gain of function) of Hox can contribute to. Another set of wings in the fruit fly, duplication of fingernails, ectopic ears in mice, excess feathers in duck/quail chimeras, and homeosis of segment 2 to jaw in Hox2a mutantsarrow_forwardSelect all of the following that changes in the MC1R gene can lead to: Changes in spots/stripes in lizards, changes in coat coloration in mice, ectopic ear formation in Siberian hamsters, and red hair in humansarrow_forwardPleiotropic genes are genes that (blank) Cause a swapping of organs/structures, are the result of duplicated sets of chromosomes, never produce protein products, and have more than one purpose/functionarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax





