![Construction Management, 5th Edition](https://www.bartleby.com/isbn_cover_images/9781119425731/9781119425731_smallCoverImage.jpg)
Concept explainers
The differences between “liquidated damages” and a “penalty” for the late completion of the contract.
![Check Mark](/static/check-mark.png)
Explanation of Solution
The difference between the “liquidated damages” and a “penalty” for the late completion of the contract is as follows:
The difference between the former and the latter is that the liquidated damages is the sum of money that the concerned project owner loses for not completing the project, whereas the penalty for the late completion of the contract simply means that the contractor needs to pay a fine for not completing the work on time or rather completing the work after the due time. It is unrelated. It differs from liquidated damages, which can be shown by the project owner for receiving the finished work late.
Want to see more full solutions like this?
Chapter 3 Solutions
Construction Management, 5th Edition
- Consider the three cases shown below, in which a soil column is subjected to different water heads (similar set-upDarby’s experiment in the reader). Using the tables provided, establish the pressure, elevation, and total heads ateach location, considering that the datum is:a) at the headwater, andb) at the tailwater.c) What was the effect of assuming a different datum on the i) pressure, ii) elevation, and iii) total heads?d) In the schematic for each case, draw an arrow indicating the direction of water flow inside the soil.e) What is the hydraulic gradient across the soil in each case?f) If the soil permeability and cross-sectional area of the cylinder remains constant across the different cases, whichone leads to the largest flow rate q? Which one has the lowest flow rate?g) What assumptions were necessary for you to answer these questions?arrow_forwardFor given distributed loads, see figures below, determine resultant and moments around load ends (points A and B). Assume p = 2kN/m.arrow_forwardA permeability test apparatus of diameter 82.5 mm contains a column of fine sand 460 mm long. When water flows through it under a constant head at a rate of 191 cm3/minute, the loss of head between two points 250 mm apart is 380 mm. Calculate the coefficient of permeability of the fine sand. If falling head test is made on the same sample using a standpipe of diameter of 30 mm, in what time will the water level in standpipe fall from 1560 mm to 1066 mm above outflow level.arrow_forward
- Computation must be completeFor the given cantilever beam shown in the figure below,a. Draw the shear and moment diagram using service loads.b. Determine the critical design moment using Working Stress Design (Ma) load combinations.c. Draw the shear and moment diagram using factored loads.d. Determine the critical design moment using Strength Design (Mu) load combinations, use NSCP2015.e. For the given cross-section of the beam, give the reason why the reinforcement is at the topportion of the beam section?arrow_forwardLAB: FORCE AND FORCE-RELATED VARIABLES ASSIGNMENT INSTRUCTIONS INSTRUCTIONS Lab assignments are intended to give you some ‘hands on' experience in applying the concepts introduced in the course text. They are designed to get you out of your classroom or office and develop the skills of designing experiments and collecting data, and then performing calculations, evaluating the results, and communicating your findings. Labs are more than just number crunching - they are about reflecting on what is both practical and technically sound engineering problem-solving. For each problem below, address the scenario presented and develop engineering solutions. Communicate your results using drawings, pictures, and discussion, supported by calculations developed using the Microsoft Equation Editor or similar tool. Submit your lab report in a single pdf file uploaded to the location provided in Canvas before the due date/time indicated. Each problem should be treated as a micro-report with a problem…arrow_forwardHow can a construction estimator gain experience to better judge appropriate contingency amounts?arrow_forward
- What are the potential risks and rewards of including a higher or lower contingency amount in a construction estimate?arrow_forwardDraw moment and shear diagramsarrow_forwardFIND THE INTERNAL MISSING ANGLES AND MISSING SIDESOF A 90° RIGHT TRIANGLE WITH A HEIGHT OF 96 AND A BASE OF 48.DRAW A PROPORTIONAL SKETCH OF THE TRIANGLE, IDENTIFY GIVEN INFORMATIONAND LABEL MISSING INFORMATION. WHAT IS AREA TO THE NEAREST SQ. FT.?arrow_forward
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage Learning
- Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399395/9781337399395_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285165738/9781285165738_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305086272/9781305086272_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285852225/9781285852225_smallCoverImage.gif)