MindTap for Herman's Understanding Motor Controls, 4th Edition [Instant Access], 2 terms
MindTap for Herman's Understanding Motor Controls, 4th Edition [Instant Access], 2 terms
4th Edition
ISBN: 9781337798754
Author: Herman; Stephen L.
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 3, Problem 1RQ

A manual motor starter controls a single phase 120 volt motor. The motor is not running, and the switch handle on the starter is found to be in the center position. What does this indicate?

Expert Solution & Answer
Check Mark
To determine

The indication of center position of switch handle of a manual motor starter.

Explanation of Solution

Manual motor starter is simple and common motor starter. Operator involvement is must to change the state of a manual motor starter. A manual motor starter is looks like a simple toggle switch. In addition, the manual motor starters are come up with overload protectors. Thus, the manual motor starter has three positions namely ON, OFF, and over load protection.

The two end positons of the toggle lever of a manual motor starter indicates ON and OFF positions. The center position indicates that the motor is tripped due to over load. Whenever the current flows in a circuit, a proportionate heat is generated in a conductor. When a motor is over loaded, more current will flow, heat generation is high. If this continues, the motor will fail. Thus, the overload heater (protector) is involved. The over load protector is designed for normal operating condition. When a motor runs abnormally (over loading), the over load protector stops the power supply to the motor. Thereby, the toggle lever (switch handle) moved to center position.

Hence, the center position of switch handle of a manual motor starter denotes that the motor is tripped due to over load.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The 120 kg wheel has a radius of gyration of 0.7 m. A force P with a magnitude of 50 N is applied at the edge of the wheel as seen in the diagram. The coefficient of static friction is 0.3, and the coefficient of kinetic friction is 0.25. Find the acceleration and angular acceleration of the wheel.
Auto Controls Using MATLAB , find the magnitude and phase plot of the  compensators   NO COPIED SOLUTIONS
4-81 The corner shown in Figure P4-81 is initially uniform at 300°C and then suddenly exposed to a convection environment at 50°C with h 60 W/m². °C. Assume the = 2 solid has the properties of fireclay brick. Examine nodes 1, 2, 3, 4, and 5 and deter- mine the maximum time increment which may be used for a transient numerical calculation. Figure P4-81 1 2 3 4 1 cm 5 6 1 cm 2 cm h, T + 2 cm
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License