Concept explainers
Why is static electricity considered to be a charge and not a current?
Why is static electricity considered to be a charge and not a current?
Answer to Problem 1RQ
Static electricity refers to electrons that are immobile and not moving. Hence, it is a charge and not a current.
Explanation of Solution
Description:
The word static is used to express any quantity that is not moving or idle. Static electricity refers to electrons that are idle and immobile. Hence, it is considered to be a charge and not a current. A static charge can be either positive or negative depending upon the number of electrons. If an object has less electrons, it will have a positive charge; and if it has an excess of electrons, it will carry a negative charge.
Insulators are the only materials that hold the electrons motionless and keep them from flowing to a different position. Hence, electrostatic charges are built up on insulator materials. Electrostatic charges can be built up on a conductor only if it is electrically insulated from the surrounding objects.
Conclusion:
The reasons why static electricity is considered to be a charge and not a current has been explained.
Want to see more full solutions like this?
Chapter 3 Solutions
Delmar's Standard Textbook Of Electricity
- Q1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response h[n]= = [321]. Find the output y[n] of the system. a. Using analytical technique. b. Using linear convolution technique.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardAn antenna circuit is connected to a 4/4 transmission line with a characteristic impedance 5052. The transmission line is terminated with an antenna having a load impedance Z=60+ j4012. The input voltage at the source is V, 100 V RMS Vy 1. Calculate the input impedance seen by the source at the antenna connection point. 2. Determine the current flowing into the antenna. 3. Verify the supplied power from the source. 4. Calculate the radiated power P 5. Find the power lost in the systemarrow_forward
- A resonant half wavelength dipole is made of copper (G= 5.7 ×10 S/m) wire. Determine the conduction-dielectric (radiation) efficiency e of the dipole antenna, if the operating frequency is = 100 MHz, the radi of the wire b is 3x102arrow_forward"Detail the solution to the question with an explanation of the integration." A diploe with a total loss resistance of 122, is connected to generator whose internal impedance is 50+j25, the peak voltage of generator is 2 V and the impedance of the dipole excluding the loss resistance is 73+j42.5. All antenna and generator are connected via 50-92 2/4 long lossless transmission line. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator (c) Determine the power radiated by the antennaarrow_forwardFor an X-band (8.2-12.4) GHz rectangular horn antenna with aperture dimensions of 5.5cm and 7.4cm. find its maximum effective aperture (in cm2) when its gain (over isotropic) is 1- 14.8dB at 8.2 GHz 2-16.5dB at 10.3GHz 3- 18dB at 12.4GHzarrow_forward
- Find the directivity in dB and the effective aperture for the following normalized radiation intensity (take f=100 MHz): U(0,0)=0.342csc0 0≤0≤20 20 ≤0≤60 60 ≤0≤18arrow_forwardAn antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via a 2/4-long transmission line with characteristic impedance of 75 ohms. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator. (c) Determine the power radiated by the antenna. (d) Determine the reflection coefficient at the antenna terminals.arrow_forwardcircuit analysis using superposition what is value of iarrow_forward
- Two X-band 8.2-12.4 GHz rectangular horns, with aperture dimensions of 5.5 cm and 7.4 cm and each with a directivity of 16.3 dB (over isotropic at 10 GHz), are used as transmitting and receiving antennas. Assuming that the input power is 200 mW, the VSWR of each is 1.1. The conduction-dielectric efficiency is 100%, and the antennas are polarization-matched, find the maximum received power when the horns are separated in air by 5 m.arrow_forwardThe normalized radiation intensity of an antenna is rotationally symmetric in 4, and it is represented by 1 0°≤8 <30° 0.5 30° ≤ 0 < 60° U = 0.1 60° ≤ 0 < 90° 90° ≤ 0 ≤ 180° a) Determine the directivity (above isotropic) of an antenna in dB? b) Determine the directivity (above an infinitesimal dipole) of an antenna in dB?arrow_forwardA resonant lossless 2/2 dipole antenna, having a directivity of 2.156 dB at frequency of 9 MHz, has input impedance 73 £2 and is connected to a lossless 73 2 transmission line. A wave, having the same polarization as the antenna, is incident upon the antenna with a power density of 5 W/m². Find the received power available at the end of the transmission line.arrow_forward
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning