![Bundle: Stewart, Essential Calculus: Early Transcendentals, 2nd (hardound) + WebAssign Printed Access Card for Stewart's Essential Calculus: Early ... Multi-Term + WebAssign - Start Smart Guide](https://www.bartleby.com/isbn_cover_images/9781133425946/9781133425946_largeCoverImage.gif)
Concept explainers
a)
Define one to one function.
How can conclude the function as one-to-one by looking at the graph of the function.
a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
One to one function:
When a function does not takes the same value twice, then the function is called as one to one function.
A function is said to be one to one function when no horizontal line intersects its graph more than once. So, the function is said to be as one to one by looking the graph.
b)
Define the inverse function
Provide the explanation to obtain the graph of the function
b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Consider the function f has a domain as a and range as b. Then, the domain and range of the function
The graph of inverse functions are reflections over the line
Functions which meet the above criteria are called one to one function.
c)
Find the formula for
c)
![Check Mark](/static/check-mark.png)
Answer to Problem 1RCC
The formula for
Explanation of Solution
Given information:
The function f is a one to one function.
Calculation:
Consider the function f is one to one differentiable function with the inverse function
Show the relation as follows:
The inverse function is differentiable at a.
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Stewart, Essential Calculus: Early Transcendentals, 2nd (hardound) + WebAssign Printed Access Card for Stewart's Essential Calculus: Early ... Multi-Term + WebAssign - Start Smart Guide
- Question 15 ✓ 6 pts 1 Details The function shown below is f(x). We are interested in the transformed function g(x) = 3f(2x) - 1 a) Describe all the transformations g(x) has made to f(x) (shifts, stretches, etc). b) NEATLY sketch the transformed function g(x) and upload your graph as a PDF document below. You may use graph paper if you want. Be sure to label your vertical and horizontal scales so that I can tell how big your function is. 1- 0 2 3 4 -1- Choose File No file chosen Question 16 0 pts 1 Detailsarrow_forwardhelparrow_forwardQuestion 2 Let F be a solenoidal vector field, suppose V × F = (-8xy + 12z², −9x² + 4y² + 9z², 6y²), and let (P,Q,R) = V²F(.725, —.283, 1.73). Then the value of sin(2P) + sin(3Q) + sin(4R) is -2.024 1.391 0.186 -0.994 -2.053 -0.647 -0.588 -1.851 1 ptsarrow_forward
- 1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forwardanswerarrow_forward1. Given the vector field F(x, y, z) = -zi, verify the relation 1 VF(0,0,0) lim +0+ volume inside S ff F• Nds S. where S, is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward
- Let a = (-4, 5, 4) and 6 = (1,0, -1). Find the angle between the vector 1) The exact angle is cos 2) The approximation in radians isarrow_forwardFind the (exact) direction cosines and (rounded to 1 decimal place) direction angles of = (3,7,6)arrow_forwardLet a = (-1, -2, -3) and 6 = (-4, 0, 1). Find the component of b onto a.arrow_forward
- Forces of 9 pounds and 15 pounds act on each other with an angle of 72°. The magnitude of the resultant force The resultant force has an angle of pounds. * with the 9 pound force. The resultant force has an angle of with the 15 pound force. It is best to calculate each angle separately and check by seeing if they add to 72°.arrow_forward= Let (6,2,-5) and = (5,4, -6). Compute the following: บี.บี. บี. นี = 2 −4(u. v) = (-4). v= ū. (-40) (ū. v) v =arrow_forwardLet ā-6+4j- 1k and b = 7i8j+3k. Find a. b.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)