Concept explainers
The five characteristics of visual reception relevant to transportation engineering.
Explanation of Solution
The five characteristics of visual reception relevant to transportation engineering are:
(1) Visual Acuity
(2) Peripheral Vision
(3) Color Vision
(4) Glare Vision and Recovery
(5) Depth Perception
1. Visual Acuity:
Visual Acuity is used to find very small particles of an object which reflects individual sight distance of the person to their line of vision. This is measured in united states using a Snellen eye chart. This is the standard form of a length of an exam room, which is the length in the United States.
2. Peripheral Vision:
Peripheral Vision is the capability of people to see the objects beyond the hollow surface for the clearest vision. When the driver sees a vehicle coming near to his vehicle from the side, it is known as peripheral vision. Although the object may not be clear but using the hollow surface the object can be seen up to an angle depending upon the speed of the vehicle.
3. Color Vision:
Color vision is used to differentiate from one color to another color, but inefficiency to do so is referred to as color blindness. In this color combination test, black and white and black and yellow is tried on a person eyes. These color combinations are sensitive, and are usually used in regulatory traffic signals and in warnings.
4. Glare Vision and Recovery:
Direct and specular are the two types of glare vision.
When directly bright light falls on drivers' eye like a headlight shining in the eyes of the driver than direct glare occurs. When a bright light is reflected by the image in the field of vision example windshield reflected by the sun than specular glare occurs.
When the light source is passed through the effects of glare than the time required for a person for recovery of the effects is called glare recovery.
5. Depth Perception:
It is the ability to estimate distance, speed and to see the object in three-dimensional views. It is used during turning and passing man oeuvres of a two-lane highway.
Want to see more full solutions like this?
Chapter 3 Solutions
Traffic and Highway Engineering
- ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardA square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.5B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ Variation of Influence Value I m n 0.5 0.6 0.8 1.0 0.2 0.4 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = Activity Frame (b) Determine the vertical stress increase at a depth of 0.5B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L+ z) (Enter your answer to three significant figures.) Δσ/90 = (c) Determine the vertical stress increase at a depth of 0.5B below the center using stress isobars in…arrow_forwardNeed help!!!arrow_forward
- 2 A flexible circular area is subjected to a uniformly distributed load of 450 kN/m² (the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. H₂ 1.0 H₂ B 0.8 CHI HD DV 0.6 C 1.0 1.5 0.4 0.2 6.0 8.0. 10.0 2.0 2.5 3.0 4.0 5.0 H₁ (Enter your answer to two significant figures.) Δσαν τ kN/m² 6arrow_forwardRefer to the figure below. Using the procedure outlined in your textbook, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 45 tons. Use the equations: Aσ = and qo x B x L (B+ z)(L+ z) Aσ av (H2/H₁) Δσι +44 + Δσο net load 6 4:5 ft 10 ft 5ft x 5ft Sand Sand y=100 lb/ft³ Ysat 122 lb/ft³:" Ysat 120 lb/ft³: 0.7 C=0.25 Groundwater table C=0.06 Preconsolidation pressure = 2000 lb/ft² (Enter your answer to three significant figures.) Ασαν = lb/ft²arrow_forwardRefer to the figure below, which shows a flexible rectangular area. Given: B₁ = 4 ft, B₂ = 6 ft, L₁ = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 4100 lb/ft², determine the stress increase at a depth of 10 ft located immediately below point O. Use the table below. T B(1) 3 B(2) 2 L(1) * 4 L2) Table 1 Variation of Influence Value I n m 0.8 0.9 1.0 1.2 1.4 0.1 0.02576 0.02698 0.02794 0.02926 0.03007 0.2 0.05042 0.05283 0.05471 0.05733 0.05894 0.3 0.07308 0.07661 0.07938 0.08323 0.08561 0.4 0.09314 0.09770 0.10129 0.10631 0.10941 0.5 0.11035 0.11584 0.12018 0.12626 0.13003 0.6 0.12474 0.13105 0.13605 0.14309 0.14749 0.7 0.13653 0.14356 0.14914 0.15703 0.16199 0.8 0.14607 0.15371 0.15978 0.16843 0.17389 0.9 0.15371 0.16185 0.16835 0.1766 0.18357 1.0 0.15978 0.16835 0.17522 0.18508 0.19139 1.1 0.16843 0.17766 0.18508 0.19584 0.20278 (Enter your answer to three significant figures.) Aσ = lb/ft²arrow_forward
- Point loads of magnitude 100, 200, and 380 kN act at B, C, and D, respectively (in the figure below). Determine the increase in vertical stress at a depth of 6 m below point A. Use Boussinesq's equation. B 6 m A 6 m с 3 m D (Enter your answer to three significant figures.) Δαχτ kN/m²arrow_forwardTwo line loads q₁ = 30 kN/m and 92 = 44 kN/m of infinite lengths are acting on top of an elastic medium, as shown in the figure below. Find the vertical stress increase at A. 92 91 6 m 3 m 3 m Δσ A (Enter your answer to three significant figures.) Vertical stress increase at A = kN/m²arrow_forwardA flexible circular area is subjected to a uniformly distributed load of 144 kN/m² (see the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. Use the equations: 1 Ασ = go 1 [1 + (2) ² ³/2 and Aσ av (H2/H1) Δσι + 41ση + Ασο 6 9 B/2 krark do Δε Aσ (Enter your answer to three significant figures.) Ασαν = kN/m²arrow_forward
- In construction what is the difference in general requirements specific project requirements?arrow_forwardRefer to the figure below. Determine the vertical stress increase Aσ at point A with the values q₁ = 90 kN/m, q2 = 410 kN/m, x₁ = 4m, x2 = 2.5 m, and z = 3 m. Line load = 91 Line load=92 Δε (Enter your answer to three significant figures.) Δατ kN/m²arrow_forwardRefer to the figure below. A strip load of q = 870 lb/ft² is applied over a width B = 36 ft. Determine the increase in vertical stress at point A located z = 15 ft below the surface. Given: x = 27 ft. Use the table below. B q = Load per unit area Aσ A Table 1 Variation of Ao/go with 2z/B and 2x/B 2x/B 2z/B 1.3 1.4 1.5 1.6 0.00 0.000 0.000 0.000 1.7 0.000 0.000 0.10 0.007 0.003 0.002 0.001 0.001 0.20 0.040 0.020 0.011 0.30 0.090 0.052 0.031 0.40 0.141 0.090 0.059 0.040 0.027 0.50 0.185 0.128 0.089 0.063 0.60 0.222 0.163 0.120 0.088 0.70 0.250 0.193 0.80 0.273 0.218 0.007 0.004 0.020 0.013 0.046 0.066 0.148 0.113 0.087 0.173 0.137 0.108 0.90 0.291 0.239 0.195 0.158 0.128 1.00 0.305 0.256 0.214 0.177 0.147 (Enter your answer to three significant figures.) lb/ft² Δοχ =arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning