Concept explainers
(a)
Interpretation : To convert the given number 0.0008917 to standard scientific notation.
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(a)
Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
The given number:
Must be converted, so select the first number, ensure the power is correct.
(b)
Interpretation : To convert the given number
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(b)
Answer to Problem 14CR
Explanation of Solution
In order to convert expressions in scientific notation to ordinary decimal notation, we must follow the following rules:
Multiply the given power to the base number.
When multiplied, we get a decimal number, typically larger than the original expression.
(c)
Interpretation : To convert the given number
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(c)
Answer to Problem 14CR
Explanation of Solution
In order to convert expressions in scientific notation to ordinary decimal notation, we must follow the following rules:
Multiply the given power to the base number.
When multiplied, we get a decimal number, typically larger than the original expression.
(d)
Interpretation : To convert the given number 85,100,000 to standard scientific notation.
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(d)
Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
The given number:
Must be converted, so select the first number, ensure the power is correct.
Thus, the scientific notation is
(e)
Interpretation : To convert the given calculation
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(e)
Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
For a multiplication or division, significant figures rules must be followed.
The total amount of significant figures in the final result must be equal to the least amount of significant figures in the numbers multiplied or divided.
From the first number, 4 significant figures
From the second number, 4 significant figures.
Then, 4 significant figures must be kept.
The given number:
Calculate the basis numbers
Multiply the powers:
The tenth base:
Thus, the number becomes 121.863
Keep only 4 significant numbers 121.863, bold digitmust be rounded up. Since, it is followed by digit 6 which is greater than 5, the digit 8 is rounded up to 9. The number becomes 121.9.
Thus, the scientific figure will be
(f)
Interpretation : To convert the given calculation to standard scientific notation.
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(f)
Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
For a multiplication or division, significant figures rules must be followed.
The total amount of significant figures in the final result must be equal to the least amount of significant figures in the numbers multiplied or divided.
From the first number, 4 significant figures.
From the second number, 4 significant figures.
Then, significant figures must be kept.
The given number:
Calculate the basis numbers
Dividing the powers:
The tenth base:
Keep only 4 significant numbers
Final expression
Thus, the scientific notation will be
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Introductory Chemistry: A Foundation, 8th + OWLv2 6-Months Printed Access Card
- Classification of boranes.arrow_forwardWhat is the pH of a solution made by adding 10-2 M sodium benzoate (C6H5COONa) to pure water, taking into account nonideal solute behavior? Benzoate is the conjugate base of benzoic acid (Ka = 6.25×10-5), a common preservative added to food and beverages.arrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Briefly explain the existence of Nb-Nb bond in the alpha-NbI4 compound.arrow_forwardIn the case of isopilianions, briefly state:- why polymeric species with a defined MW are formed.- why the extent of polymerization is different depending on the metal.- why these polyhedra with such special structures are formed.arrow_forwardA carboxylic acid reacts with water to form a carboxylate ion and H,O+. Complete the reaction. reaction: (CH),CHCH2COOH + H2O (CH), CHCH, COO¯ + H₂O+ Write the IUPAC name of the carboxylate ion formed in the reaction. IUPAC name: BIU X2 SPECIAL GREEK ALPHABET ~ Iarrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardA solution contains 10-3 M (NH4)2CO3 plus 10-3 M CaCO3. (NH4+: pKa 9.26) a) Follow the four steps and list the species and equations that would have to be solved to determine the equilibrium solution composition. (15 pts) b) Prepare a log C-pH diagram for the solution. Use a full sheet of graph paper, and show the ranges 1≤ pH < 13 and -10≤ log C≤ -1. (10 pts) c) Use the graphical approach for the solution pH. What is the concentration of all species? (15 pts)arrow_forwardKeggin structure.arrow_forward
- Given: N2(g) + 3H2(g)2NH3(g) AG° = 53.8 kJ at 700K. Calculate AG for the above reaction at 700K if the reaction mixture consists of 20.0 atm of N2(g), 30.0 atm of H2(g), and 0.500 atm of NH3(g). A) -26.9 kJ B) 31.1 kJ C) -15.6 kJ D) 26.9 kJ E) -25.5 kJarrow_forwardExplain the structure of the phosphomolybdate anion [PMo12O40]3-.arrow_forwardg. NaI, H3PO4 h. 1. BH3/THF 2. H₂O2, OH i. HC1 j. Brarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning