
Concept explainers
(a)
Interpretation : To convert the given number 0.0008917 to standard scientific notation.
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(a)

Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
The given number:
Must be converted, so select the first number, ensure the power is correct.
(b)
Interpretation : To convert the given number
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(b)

Answer to Problem 14CR
Explanation of Solution
In order to convert expressions in scientific notation to ordinary decimal notation, we must follow the following rules:
Multiply the given power to the base number.
When multiplied, we get a decimal number, typically larger than the original expression.
(c)
Interpretation : To convert the given number
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(c)

Answer to Problem 14CR
Explanation of Solution
In order to convert expressions in scientific notation to ordinary decimal notation, we must follow the following rules:
Multiply the given power to the base number.
When multiplied, we get a decimal number, typically larger than the original expression.
(d)
Interpretation : To convert the given number 85,100,000 to standard scientific notation.
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(d)

Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
The given number:
Must be converted, so select the first number, ensure the power is correct.
Thus, the scientific notation is
(e)
Interpretation : To convert the given calculation
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(e)

Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
For a multiplication or division, significant figures rules must be followed.
The total amount of significant figures in the final result must be equal to the least amount of significant figures in the numbers multiplied or divided.
From the first number, 4 significant figures
From the second number, 4 significant figures.
Then, 4 significant figures must be kept.
The given number:
Calculate the basis numbers
Multiply the powers:
The tenth base:
Thus, the number becomes 121.863
Keep only 4 significant numbers 121.863, bold digitmust be rounded up. Since, it is followed by digit 6 which is greater than 5, the digit 8 is rounded up to 9. The number becomes 121.9.
Thus, the scientific figure will be
(f)
Interpretation : To convert the given calculation to standard scientific notation.
Concept Introduction : Scientific notation for a number is written in such a way that large numbers are written in small decimal form which is then multiplied by the power of 10.
For numbers less than 1, the power of 10 in scientific notation has negative exponent and for numbers greater than 1, the power is either zero or has positive exponent.
(f)

Answer to Problem 14CR
Explanation of Solution
In order to convert numbers to scientific notation, we must follow the following rules:
Use a single number before the decimal point. All other numbers will be placed after the decimal point.
The basis of expression will be the 10th power. The powers can be any integer number.
For a multiplication or division, significant figures rules must be followed.
The total amount of significant figures in the final result must be equal to the least amount of significant figures in the numbers multiplied or divided.
From the first number, 4 significant figures.
From the second number, 4 significant figures.
Then, significant figures must be kept.
The given number:
Calculate the basis numbers
Dividing the powers:
The tenth base:
Keep only 4 significant numbers
Final expression
Thus, the scientific notation will be
Want to see more full solutions like this?
Chapter 3 Solutions
Introductory Chemistry >IC<
- 3. Name this ether correctly. H₁C H3C CH3 CH3 4. Show the best way to make the ether in #3 by a Williamson Ether Synthesis. Start from an alcohol or phenol. 5. Draw the structure of an example of a sulfide.arrow_forward1. Which one(s) of these can be oxidized with CrO3 ? (could be more than one) a) triphenylmethanol b) 2-pentanol c) Ethyl alcohol d) CH3 2. Write in all the product(s) of this reaction. Label them as "major" or "minor". 2-methyl-2-hexanol H2SO4, heatarrow_forward3) Determine if the pairs are constitutional isomers, enantiomers, diastereomers, or mesocompounds. (4 points)arrow_forward
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





