
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 10P
A rock is thrown upward from the level ground in such a way that the maximum height of its flight is equal to its horizontal range R. (a) At what angle θ is the rock thrown? (b) In terms of the original range R, what is the range Rmax the rock can attain if it is launched at the same speed but at the optimal angle for maximum range? (c) Would your answer to part (a) be different if the rock is thrown with the same speed on a different planet? Explain.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
Chapter 3 Solutions
College Physics
Ch. 3.1 - Which of the following objects cant be...Ch. 3.1 - Consider the following controls in an automobile:...Ch. 3.1 - A girl on a bicycle takes 15.0 s to ride half way...Ch. 3.1 - Suppose you are carrying a ball and running at...Ch. 3.1 - As a projectile moves in its parabolic path, where...Ch. 3 - As a projectile moves in its path, is there any...Ch. 3 - Construct motion diagrams showing the velocity and...Ch. 3 - Explain whether the following particles do or do...Ch. 3 - A ball is projected horizontally from the top of a...Ch. 3 - A projectile is launched with speed v0 at an angle...
Ch. 3 - Determine which of the following moving objects...Ch. 3 - Two projectiles are thrown with the same initial...Ch. 3 - A ball is thrown upward in the air by a passenger...Ch. 3 - A projectile is launched at some angle to the...Ch. 3 - A baseball is thrown from the outfield toward the...Ch. 3 - A student throws a heavy red ball horizontally...Ch. 3 - A boat is heading due east at speed v when...Ch. 3 - As an apple tree is transported by a truck moving...Ch. 3 - An airplane in a holding pattern flies at constant...Ch. 3 - A hiker walks 2.00 km north and then 3.00 km east,...Ch. 3 - A miniature quadcopter is located at xi = 2.00 m...Ch. 3 - An ant crawls on the floor along the curved path...Ch. 3 - Explain whether the following particles do or do...Ch. 3 - A rabbit is moving in the positive x-direction at...Ch. 3 - A student stands at the edge of a cliff and throws...Ch. 3 - One of the fastest recorded pitches in major...Ch. 3 - The best leaper in the animal kingdom is the puma,...Ch. 3 - A rock is thrown upward from the level ground in...Ch. 3 - A placekicker must kick a football from a point...Ch. 3 - The record distance in the sport of throwing...Ch. 3 - A brick is thrown upward from the top of a...Ch. 3 - From the window of a building, a ball is tossed...Ch. 3 - A car is parked on a cliff overlooking the ocean...Ch. 3 - An artillery shell is fired with an initial...Ch. 3 - A projectile is launched with an initial speed of...Ch. 3 - A fireman d = 50.0 m away from a burning building...Ch. 3 - A playground is on the flat roof of a city school,...Ch. 3 - A cruise ship sails due north at 4.50 m/s while a...Ch. 3 - Suppose a boat moves at 12.0 m/s relative to the...Ch. 3 - A car travels due east with a speed of 50.0 km/h....Ch. 3 - A jet airliner moving initially at 3.00 102 mi/h...Ch. 3 - A Coast Guard cutter detects an unidentified ship...Ch. 3 - A bolt drops from the ceiling of a moving train...Ch. 3 - An airplane maintains a speed of 630 km/h relative...Ch. 3 - Suppose a chinook salmon needs to jump a waterfall...Ch. 3 - An airplane maintains a speed of 630 km/h relative...Ch. 3 - A river has a steady speed of 0.500 m/s. A student...Ch. 3 - This is a symbolic version of Problem 29. A river...Ch. 3 - How long does it take ail automobile traveling in...Ch. 3 - A moving walkway at an airport has a speed v1 and...Ch. 3 - A boy throws a baseball onto a roof and it rolls...Ch. 3 - You can use any coordinate system you like to...Ch. 3 - Towns A and B in Figure P3.35 are 80.0 km apart. A...Ch. 3 - In a local diner, a customer slides an empty...Ch. 3 - A father demonstrates projectile motion to his...Ch. 3 - Two canoeists in identical canoes exert the same...Ch. 3 - A rocket is launched at an angle of 53.0 above the...Ch. 3 - A farm truck travels due east with a constant...Ch. 3 - (a) If a person can jump a maximum horizontal...Ch. 3 - A ball is thrown straight upward and returns to...Ch. 3 - A home run is hit in such a way that the baseball...Ch. 3 - A 2.00-m-tall basketball player is standing on the...Ch. 3 - A quarterback throws a football toward a receiver...Ch. 3 - The x- and y-coordinates of a projectile launched...Ch. 3 - Spitting cobras can defend themselves by squeezing...Ch. 3 - When baseball outfielders throw the ball, they...Ch. 3 - A hunter wishes to cross a river that is 1.5 km...Ch. 3 - Chinook salmon are able to move upstream faster by...Ch. 3 - A daredevil is shot out of a cannon at 45.0 to the...Ch. 3 - If raindrops are falling vertically at 7.50 m/s,...Ch. 3 - A celebrated Mark Twain story has motivated...Ch. 3 - A landscape architect is planning an artificial...Ch. 3 - A golf ball with an initial speed of 50.0 m/s...Ch. 3 - Antlion larvae lie in wait for prey at the bottom...Ch. 3 - One strategy in a snowball fight is to throw a...Ch. 3 - A football receiver running straight downfield at...Ch. 3 - The determined Wile E. Coyote is out once more to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
How does the removal of hydrogen atoms from nutrient molecules result in a loss of energy from the nutrient mol...
SEELEY'S ANATOMY+PHYSIOLOGY
Label each statement about the polynucleotide ATGGCG as true or false. The polynucleotide has six nucleotides. ...
General, Organic, and Biological Chemistry - 4th edition
Describe the evolution of mammals, tracing their synapsid lineage from early amniote ancestors to true mammals....
Loose Leaf For Integrated Principles Of Zoology
What are the cervical and lumbar enlargements?
Principles of Anatomy and Physiology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY