
Concept explainers
a)
Interpretation:
To draw the maximum resonance structures possible for the species
Concept introduction:
Resonance forms differ only in the placement of their π and nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. For writing different resonance forms in the structure given, first a three atom groupings with a multiple bond and a p orbital with pair of electrons is to be identified. Then the exchange of position of double bond and electrons in p orbital will give another resonance form. The shift is represented by a curved arrow.
To draw:
The maximum resonance structures possible for the species

Answer to Problem 38AP
The maximum resonance structures possible for the species is two.
Explanation of Solution
Resonance forms differ only in the placement of their π and their nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. The anion has a carbon atom doubly bonded to an oxygen and singly bonded to an adjacent carbon atom bearing negative charge. Using the nonbonding electrons on the negatively charged carbon atom and the π bond one more structure can be drawn, as shown, without change in position or hybridization of any atom. Hence the species given has two resonance forms.
The maximum resonance structures possible for the species are two.
b)
Interpretation:
To draw the maximum resonance structures possible for the species
Concept introduction:
Resonance forms differ only in the placement of their π and nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. For writing different resonance forms in the structure given, first a three atom groupings with a multiple bond and a p orbital with pair of electrons is to be identified. Then the exchange of position of double bond and electrons in p orbital will give another resonance form. The shift is represented by a curved arrow.
To draw:
The maximum resonance structures possible for the species

Answer to Problem 38AP
The maximum resonance structures possible for the species is three.
Explanation of Solution
Resonance forms differ only in the placement of their π and their nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. The anion given has a carbon atom doubly bonded to another carbon and singly bonded to an adjacent carbon atom bearing negative charge. Another double bond also is present. Using the nonbonding electrons on the negatively charged carbon atom and the π bonds two more structures can be drawn as shown, without change in position or hybridization of any atom. Hence the species given has three resonance forms.
Conclusion:
The maximum resonance structures possible for the species are three.
The maximum resonance structures possible for the species are three.
c)
Interpretation:
To draw the maximum resonance structures possible for the species
Concept introduction:
Resonance forms differ only in the placement of their π and nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. For writing different resonance forms in the structure given, first a three atom groupings with a multiple bond and a p orbital with pair of electrons is to be identified. Then the exchange of position of double bond and electrons in p orbital will give another resonance form. The shift is represented by a curved arrow.
To draw:
The maximum resonance structures possible for the species

Answer to Problem 38AP
The maximum resonance structures possible for the species is three.
Explanation of Solution
Resonance forms differ only in the placement of their π and their nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. The cation given has a carbon doubly bonded to positively charged nitrogen and singly bonded to two more nitrogens each with a pair of nonbonding electrons. Using the nonbonding electrons on the nitrogens and the π bond in C=N, two more structures, as shown, can be drawn without change in position or hybridization of any atom. Hence the species given has three resonance forms.
The maximum resonance structures possible for the species are three.
d)
Interpretation:
To draw the maximum resonance structures possible for the species
Concept introduction:
Resonance forms differ only in the placement of their π and nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. For writing different resonance forms in the structure given, first a three atom groupings with a multiple bond and a p orbital with pair of electrons is to be identified. Then the exchange of position of double bond and electrons in p orbital will give another resonance form. The shift is represented by a curved arrow.
To draw:
The maximum resonance structures possible for the species

Answer to Problem 38AP
The maximum resonance structures possible for the species is two
Explanation of Solution
Resonance forms differ only in the placement of their π and their nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. The cation given has a carbon atom singly bonded to a sulfur atom which has two lone pairs of electrons. Using the nonbonding electrons on the sulfur atom one more structure can be drawn, as shown, without change in position or hybridization of any atom. Hence the species given has two resonance forms.
The maximum resonance structures possible for the species are two.
e)
Interpretation:
To draw the maximum resonance structures possible for the species
Concept introduction:
Resonance forms differ only in the placement of their π and nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. For writing different resonance forms in the structure given, first a three atom groupings with a multiple bond and a p orbital with pair of electrons is to be identified. Then the exchange of position of double bond and electrons in p orbital will give another resonance form. The shift is represented by a curved arrow.
To draw:
The maximum resonance structures possible for the species

Answer to Problem 38AP
The maximum resonance structures possible for the species is three.
Explanation of Solution
Resonance forms differ only in the placement of their π and their nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. In the cation given, the positively charged carbon is attached a carbon chain that contains two conjugated double bonds. Using the two π bonds two more structures can be drawn, as shown, without change in position or hybridization of any atom. Hence the species given has three resonance forms.
The maximum resonance structures possible for the species are three.
Want to see more full solutions like this?
Chapter 2 Solutions
OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card for McMurry's Organic Chemistry, 9th
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- Select all molecules which are chiral. Brarrow_forwardUse the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

