Physics:f/sci.+engrs.,ap Ed.
10th Edition
ISBN: 9781337553469
Author: Jewett, SERWAY
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29.3, Problem 29.4QQ
To determine
The rank of the closed path from a
to d
in terms of the magnitude of ∮ B → ⋅ d s →
for the closed path from greatest to least.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Figure 8 shows a coaxial cable (two nested cylinders) of length l, inner radius a and outer radiusb. Note that l >> a and l >> b. The inner cylinder is charged to +Q and the outer cylinder ischarged to −Q.The cable carries a current I, which flows clockwise. Use Ampere’s Law to calculate themagnetic field B⃗ at r < a, a < r < b, and r > b.
B6
Rank the magnitudes of ∮ B→ ⋅ d s→ for the closed paths a through d as shown from greatest to least.
Chapter 29 Solutions
Physics:f/sci.+engrs.,ap Ed.
Ch. 29.1 - Consider the magnetic field due to the current in...Ch. 29.2 - A loose spiral spring carrying no current is hung...Ch. 29.3 - Prob. 29.3QQCh. 29.3 - Prob. 29.4QQCh. 29.4 - Consider a solenoid that is very long compared...Ch. 29 - Calculate the magnitude of the magnetic field at a...Ch. 29 - You are working as an expert witness in a civil...Ch. 29 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 29 - Prob. 4PCh. 29 - Prob. 5P
Ch. 29 - Consider a flat, circular current loop of radius R...Ch. 29 - Prob. 7PCh. 29 - One long wire carries current 30.0 A to the left...Ch. 29 - Determine the magnetic field (in terms of I, a,...Ch. 29 - Prob. 10PCh. 29 - Two long, parallel wires carry currents of I1 =...Ch. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - You are part of a team working in a machine parts...Ch. 29 - Why is the following situation impossible? Two...Ch. 29 - Prob. 17PCh. 29 - Niobium metal becomes a superconductor when cooled...Ch. 29 - The magnetic coils of a tokamak fusion reactor are...Ch. 29 - A packed bundle of 100 long, straight, insulated...Ch. 29 - The magnetic field 40.0 cm away from a long,...Ch. 29 - Prob. 22PCh. 29 - A long solenoid that has 1 000 turns uniformly...Ch. 29 - A certain superconducting magnet in the form of a...Ch. 29 - Prob. 25PCh. 29 - You are given a certain volume of copper from...Ch. 29 - Prob. 27PCh. 29 - You are working for a company that creates special...Ch. 29 - A solenoid of radius r = 1.25 cm and length =...Ch. 29 - The magnetic moment of the Earth is approximately...Ch. 29 - A 30.0-turn solenoid of length 6.00 cm produces a...Ch. 29 - Why is the following situation impossible? The...Ch. 29 - Suppose you install a compass on the center of a...Ch. 29 - Prob. 34APCh. 29 - A nonconducting ring of radius 10.0 cm is...Ch. 29 - Prob. 36APCh. 29 - A very large parallel-plate capacitor has uniform...Ch. 29 - Two circular coils of radius R, each with N turns,...Ch. 29 - Prob. 39APCh. 29 - Two circular loops are parallel, coaxial, and...Ch. 29 - As seen in previous chapters, any object with...Ch. 29 - Review. Rail guns have been suggested for...Ch. 29 - Prob. 43APCh. 29 - An infinitely long, straight wire carrying a...Ch. 29 - Prob. 45CPCh. 29 - We have seen that a long solenoid produces a...Ch. 29 - A wire carrying a current I is bent into the shape...Ch. 29 - Prob. 48CPCh. 29 - Prob. 49CPCh. 29 - Prob. 50CPCh. 29 - The magnitude of the force on a magnetic dipole ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2. The current distribution of an infinite, wire can be described in cylindrical coordinates by J = J(p) 2. longitudinally-uniform, and axially-symmetric (a) Show that. J = 0. (b) Considerations of longitudinal and axial symmetry require that the mag- netic field can only depend upon p, i.e. that B(p) = Bp(p)ô + Bø(p) + B₂(p)2. Use Ampère's Law to determine B6 (p) in terms of I (p) = 2π J(p') p'dp'. (c) Use the Biot and Savart Law to show that Bp(p) = B₂ (p) = 0. Side note: it is pretty easy to show that B,(p) must be zero using Gauss's Law for B with a cylindrical volume. I am not aware of an "easy" way to see B₂ (p) = 0 - not that it is very difficult using the Biot and Savart Law... (d) Use the integral form for the vector potential [Jackson, Eq. (5.32)] to determine A for this current distribution. Hint: in order to deal with divergent integrals, you may want to limit the current distribution to -L ≤ z ≤ L, determine A, adjust A by a constant (as one is allowed to do), and then…arrow_forwardI need the answer as soon as possiblearrow_forwardTwo straight, parallel, superconducting wires 7.06 mm apart carry equal currents of 12958 A in opposite direction. Calculate the force experienced in a 0.5m length. Final answer should be in two (2) decimal places. Express your answer in exponential form. For Example: - 1.13 x 10-4 should be answerd as 1.13e-4. 5.00 x 10³ should be expressed as 5.00e+3. Oarrow_forward
- geTef-Glogle Chrome modiguia/amempt.pholattempte1867768cmid=3903 E Physics II (CRN: 50010) Consider the long (L> b) cylindrical shell of inner radius a = Rand outer radius b= 3R as shown in the figure. The current I- 4 A is uniformly distributed over the cross section of the wire. Here R= 1.3 cm. What is the magnitude of the magnetic field, in units of microtesla, at distance 2R? (Ho = 4x x 10 7 T - m/A) Answer Next pagearrow_forwardThree very long, straight, parallel wires each carry currents of 10 A, directed into of the page. Thewires pass through the vertices of a right isosceles triangle of side 9 cm. What is the magnitude of themagnetic field at point P at the midpoint of the hypotenuse of the triangle?arrow_forwardA Paramagnetic material has 1028atoms/m3. The magnetic moment of each atom is 2.8 × 10−23Am3.Calculate the Paramagnetic susceptibility at 200K. What would be the dipole moment of a bar of this material 1meter long and 1square-cm cross-section placed in a field of 6 × 106A/marrow_forward
- I need the answer as soon as possiblearrow_forwardQuestion 1: A) Dinesh studying rail guns has been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (Figure 1.) consists of two long, parallel, horizontal rails, l= 6.80 cm apart, bridged by a bar of mass m= 8.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 42.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure 1 shows the bar at rest at the midpoint of the rails at the moment the current is established. He wishes to find the speed with which the bar leaves the rails after being released from the midpoint of the rails (Hint: you need to draw the figure). (Mo = 4π × 10-¹T.) Jg x V₁ = = 0 m d Figure 1. (i) Find the magnitude of the magnetic field at a distance of 1.85 cm from a single long wire carrying a current of 2.40 A. (ii) For purposes of evaluating the magnetic field, model the rails as…arrow_forwardQ1: The vector potential of magnetic field in free space is given as:(A= 40 r´ ăz ) Wb/m. i) Find (A, H, B, and J) at (r-1, 0arrow_forwardQuestion #1. Consider a current-carrying circular wire with radius r. Find the angle between the infinitesimal length dl and some distance h? +z dl h dB +y y Current-carrying circular wire Note: radius r is perpendicular to the screen Select one: O 90° O 0° O 180° O 270°arrow_forward4G OA Two infinitely long parallel wires are at a distance of 5.0 cm apart. If the wires carry a current of 3.7A, what is the exchanged force per meter between the wires (in units of uN )?arrow_forwardDraw a sketch of the situation in the figure, showing the direction of electrons carrying the current, and use RHR-1 to verify the direction of the force on the wire.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning