College Physics for AP Courses
1st Edition
ISBN: 9781630181871
Author: OpenStax, Ima Lyubkinskaya, Gregg Wolfe Douglas, Ingram, Liza Puiji, Sudhi Oberoi Nathan, Czuba
Publisher: OpenStax College.
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 29, Problem 84PE
Integrated Concepts
A 1.00-fm photon has a wavelength short enough to detect some information about nuclei. (a) What is the photon momentum? (b) What is its energy in joules and MeV? (c) What is the (relativistic) velocity of an electron with the same momentum? (d) Calculate the electron's kinetic energy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.)
(a) Where can a third charge be placed so that the net force on it is zero?
0.49
m to the right of the -2.50 μC charge
(b) What if both charges are positive?
0.49
xm to the right of the 2.50 μC charge
Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.)
magnitude
direction
2500
x
What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C
226
×
How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis
9a
9b
%
9
9d
would 0.215 be the answer for part b?
Chapter 29 Solutions
College Physics for AP Courses
Ch. 29 - Give an example of a physical entity that is...Ch. 29 - Give an example of a physical entity that is not...Ch. 29 - What aspect of the blackbody spectrum forced...Ch. 29 - If Planck's constant were large, say 1034 times...Ch. 29 - Why don't we notice quantization in everyday...Ch. 29 - Is visible light the only type of EM radiation...Ch. 29 - Which aspects of the photoelectric effect cannot...Ch. 29 - Is the photoelectric effect a direct consequence...Ch. 29 - Insulators (nonmetals) have a higher BE than...Ch. 29 - If you pick up and shake a piece of metal that has...
Ch. 29 - Why are UV, x rays, and rays called ionizing...Ch. 29 - How can treating food with ionizing radiation help...Ch. 29 - Some television tubes are CRTs. They use an...Ch. 29 - Tanning salons use "safe" UV with a longer...Ch. 29 - Your pupils dilate when visible light intensity is...Ch. 29 - One could feel heat transfer in the form of...Ch. 29 - Can a single microwave photon cause cell damage?...Ch. 29 - In an the maximum photon energy E given by hf=qV....Ch. 29 - Which formula may be used for the momentum of all...Ch. 29 - Is there any measurable difference between the...Ch. 29 - Why don't we feel the momentum of sunlight when we...Ch. 29 - How does the interference of water waves differ...Ch. 29 - Describe one type of evidence for the wave nature...Ch. 29 - Describe one type of evidence for the particle...Ch. 29 - What is the Heisenberg uncertainty principle? Does...Ch. 29 - In what ways are matter and energy related that...Ch. 29 - A LiBr molecule oscillates with a frequency of...Ch. 29 - The difference in energy between allowed...Ch. 29 - A physicist is watching a 15-kg orangutan at a zoo...Ch. 29 - What is the longest-wavelength EM radiation that...Ch. 29 - Find the longest-wavelength photon that can eject...Ch. 29 - What is the binding energy in eV of electrons in...Ch. 29 - Calculate the binding energy in eV of electrons in...Ch. 29 - What is the maximum kinetic energy in eV of...Ch. 29 - UV radiation having a wavelength of 120 nm falls...Ch. 29 - Violet light of wavelength 400 nm ejects electrons...Ch. 29 - UV radiation having a 300-nm wavelength falls on...Ch. 29 - What is the wavelength of EM radiation that ejects...Ch. 29 - Find the wavelength of photons that eject 0.100-eV...Ch. 29 - What is the maximum velocity of electrons ejected...Ch. 29 - Photoelectrons from a material with a binding...Ch. 29 - A laser with a power output of 2.00 mW at a...Ch. 29 - (a) Calculate the number of photoelectrons per...Ch. 29 - Unreasonable Results Red light having a wavelength...Ch. 29 - Unreasonable Results (a) What is the binding...Ch. 29 - What is the energy in joules and eV of a photon in...Ch. 29 - (a) Find the energy in joules and eV of photons in...Ch. 29 - Calculate the frequency in hertz of a 1.00-MeV ...Ch. 29 - (a) What is the wavelength of a 1.00-eV photon?...Ch. 29 - Do the unit conversions necessary to show that...Ch. 29 - Confirm the statement in the text that the range...Ch. 29 - (a) Calculate the energy in eV of an IP photon of...Ch. 29 - Prove that, to three-digit accuracy,...Ch. 29 - (a) What is the maximum energy in eV of photons...Ch. 29 - What is the accelerating voltage of an x-ray tube...Ch. 29 - (a) What is the ratio of power outputs by two...Ch. 29 - How many photons per second are emitted by the...Ch. 29 - Some satellites use nuclear power. (a) If such a...Ch. 29 - (a) If the power output of a 650-kHz radio station...Ch. 29 - How many x-ray photons per second are created by...Ch. 29 - (a) How far away must you be from a 650-kHz radio...Ch. 29 - Assuming that 10.0% of a 100-W light bulb's energy...Ch. 29 - Construct Your Own Problem Consider a laser pen....Ch. 29 - (a) Find the momentum of a 4.00-cm-wavelength...Ch. 29 - (a) What is the momentum of a 0.0100-nm-wavelength...Ch. 29 - (a) What is the wavelength of a photon that has a...Ch. 29 - (a) A -ray photon has a momentum of...Ch. 29 - (a) Calculate the momentum of a photon having a...Ch. 29 - Repeat the previous problem for a...Ch. 29 - (a) Calculate the wavelength of a photon that has...Ch. 29 - (a) Find the momentum of a 100-keV x-ray photon....Ch. 29 - Take the ratio of relativistic rest energy, E=mc2,...Ch. 29 - Construct Your Own Problem Consider a space sail...Ch. 29 - Unreasonable Results A car feels a small force due...Ch. 29 - At what velocity will an electron have a...Ch. 29 - What is the wavelength of an electron moving at...Ch. 29 - At what velocity does a proton have a 6.00-fm...Ch. 29 - What is the velocity of a 0.400-kg billiard ball...Ch. 29 - Find the wavelength of a proton moving at 1.00% of...Ch. 29 - Experiments are performed with ultra-cold neutrons...Ch. 29 - (a) Find the velocity of a neutron that has a...Ch. 29 - What is the wavelength of an electron accelerated...Ch. 29 - What is the kinetic energy of an electron in a TEM...Ch. 29 - (a) Calculate the velocity of an electron that has...Ch. 29 - The velocity of a proton emerging from a Van de...Ch. 29 - The kinetic energy of an electron accelerated in...Ch. 29 - Unreasonable Results (a) Assuming it is...Ch. 29 - (a) If the position of an electron in a membrane...Ch. 29 - (a) If the position of a chlorine ion in a...Ch. 29 - Suppose the velocity of an electron in an atom is...Ch. 29 - The velocity of a proton in an accelerator is...Ch. 29 - A relatively long-lived excited state of an atom...Ch. 29 - (a) The lifetime of a highly unstable nucleus is...Ch. 29 - The decay energy of a short-lived particle has an...Ch. 29 - The decay energy of a short-lived nuclear excited...Ch. 29 - What is the approximate uncertainty in the mass of...Ch. 29 - Derive the approximate form of Heisenberg's...Ch. 29 - Integrated Concepts The 54.0-eV electron in...Ch. 29 - Integrated Concepts An electron microscope...Ch. 29 - Integrated Concepts A certain heat lamp emits 200...Ch. 29 - Integrated Concepts On its high power setting, a...Ch. 29 - Integrated Concepts (a) Calculate the amount of...Ch. 29 - Integrated Concepts (a) What is for an electron...Ch. 29 - Integrated Concepts (a) What is for a proton...Ch. 29 - Integrated Concepts An electron microscope passes...Ch. 29 - Integrated Concepts (a) Calculate the velocity of...Ch. 29 - Integrated Concepts (a) What is the separation...Ch. 29 - Integrated Concepts A laser with a power output of...Ch. 29 - Integrated Concepts One problem with x rays is...Ch. 29 - Integrated Concepts A 1.00-fm photon has a...Ch. 29 - Integrated Concepts The momentum of light is...Ch. 29 - Integrated Concepts Sunlight above the Earth's...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
53. Write a formula for the ionic compound that forms from each pair of elements.
a. sodium and sulfur
b. stro...
Introductory Chemistry (6th Edition)
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
A Slice of pizza has 500 kcal. If we could burn the pizza and use all the heat to warm a 50-L container of cold...
Campbell Biology in Focus (2nd Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forwardWhat functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forward
- What does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forward
- Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forwardc = ad Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction N/C ° counterclockwise from the +x-axis 9a % 9 9barrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forward
- A spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.275 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between 91 system of all three beads is zero. E field lines 91 92 93 X What charge does each bead carry? 91 = 92 = ?2.9 0 μC × What is the net charge of the system? What charges have to be equal? μC 93 2.9 με and 93. The sum of the charge on 91 and 92 is 91 +92 = -2.9 μC, and the net charge of thearrow_forwardAn electron has an initial speed of 5.26 x 100 m/s in a uniform 5.73 x 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide × What is the direction of the force on the electron? How does it compare to the direction of the electric field, considering the sign of the electron's charge? (b) How far does the electron travel before coming to rest? 0.0781 × What kinematic equation is relevant here? How do you calculate the force due to the electric field? m (c) How long does it take the electron to come to rest? 5.27e8 What is the final velocity of the electron? s (d) What is the electron's speed when it returns to its starting point? 5.26e6 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax