Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 6Q
To determine
To rank:
a) The wires according to the radius.
b) The wires according to the magnitude of magnetic field on the surface.
c) The wires according to the value of current.
d) Whether the magnitude of the current density in the wire a is greater than, lessthan, or equal to that in wire c.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure shows a cross section of a hollow cylindrical conductor of radii
a and b, carrying a uniformly distributed current i.
(a) What the equation of the magnetic field magnitude B(r) for the radial distance r in the range b < r < a (b) What is the magnetic field strength when r = a
(c) What is the magnetic field strength when r = b
(d) What is the magnetic field strength when b = 0
A segment of wire centered at the origin (x = y = z = 0) is 2.00 mm in length and carries a current of 6.00 A in the +y-direction. You measure the magnetic field due to this segment at the point x = 3.00 m, y = 4.00 m, z = 0. Find (a) the unit vector from the wire segment to this point and (b) the magnetic field at this point.
A cylindrical conductor of radius R = 2.12cm carries a current of I = 2.45A along its length; this current is uniformly distributed throughout the cross-section of the conductor. Calculate the
magnetic field midway along the radius of the wire (that is, at r = R/2).
Calculate the distance beyond the surface of the conductor at which the magnitude of the magnetic field has the same value as the magnitude of the field at r = R/2.
Chapter 29 Solutions
Fundamentals of Physics Extended
Ch. 29 - Prob. 1QCh. 29 - Prob. 2QCh. 29 - Prob. 3QCh. 29 - Prob. 4QCh. 29 - Prob. 5QCh. 29 - Prob. 6QCh. 29 - Prob. 7QCh. 29 - Prob. 8QCh. 29 - Prob. 9QCh. 29 - Prob. 10Q
Ch. 29 - Prob. 11QCh. 29 - A surveyor is using a magnetic compass 6.1 m below...Ch. 29 - Figure 29-35a shows an element of length ds = 1.00...Ch. 29 - SSM At a certain location in the Philippines,...Ch. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Equation 29-4 gives the magnitude B of the...Ch. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - GO Figure 29.56a shows two wires, each carrying....Ch. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - GO The current-carrying wire loop in Fig. 29-6a...Ch. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - ILW The current density inside a long, solid,...Ch. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - A solenoid that is 95.0 cm long has a radius of...Ch. 29 - A 200-turn solenoid having a length of 25 cm and a...Ch. 29 - A solenoid 1.30 m long and 2.60 cm in diameter...Ch. 29 - A long solenoid has 100 turns/cm and carries...Ch. 29 - An electron is shot into one end of a solenoid. As...Ch. 29 - Prob. 55PCh. 29 - Prob. 56PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - A circular loop of radius 12 cm carries a current...Ch. 29 - Prob. 62PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - A cylindrical cable of radius 8.00 mm carries a...Ch. 29 - Two long wires lie in an xy plane, and each...Ch. 29 - Two wires, both of length L, are formed into a...Ch. 29 - Prob. 68PCh. 29 - Prob. 69PCh. 29 - Prob. 70PCh. 29 - A 10-gauge bare copper wire 2.6 mm in diameter can...Ch. 29 - A long vertical wire carries an unknown current....Ch. 29 - Prob. 73PCh. 29 - The magnitude of the magnetic field at a point...Ch. 29 - Prob. 75PCh. 29 - Prob. 76PCh. 29 - Prob. 77PCh. 29 - A long wire carrying 100 A is perpendicular to the...Ch. 29 - A long, hollow, cylindrical conductor with inner...Ch. 29 - A long wire is known to have a radius greater than...Ch. 29 - Prob. 81PCh. 29 - Prob. 82PCh. 29 - Prob. 83PCh. 29 - Three long wires all lie in an xy plane parallel...Ch. 29 - Prob. 85PCh. 29 - Prob. 86PCh. 29 - Prob. 87PCh. 29 - Prob. 88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardThe accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1= 3.0 cm and outer radius r2= 5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r = 2.0 cm. r = 4.0 cm. and r = 6.0 cm.arrow_forwardA magnetic field directed into the page changes with time according to B = 0.030 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P23.28). When t = 3.00 s and r2 = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P2?arrow_forward
- A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of magnitude 4.0105 T that is directed vertically downward, what is tire resultant magnitude of the magnetic field 20 cm above the wire? 20 cm below the wire?arrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forwardHow many turns must be wound on a flat, circular coil of radius 20 cm in order to produce a magnetic field of magnitude 4.0105 T at the center of the coil when the current through it is 0.85 A?arrow_forward
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardA square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?arrow_forwardA mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 1027 kg)?arrow_forward
- Figure CQ19.7 shows a coaxial cable carrying current I in its inner conductor and a return current of the same magnitude in the opposite direction in the outer conductor. The magnetic field strength at r = r0 is Find the ratio B/B0, at (a) r = 2r0 and (b) r = 4r0. Figure CQ19.7arrow_forwardA long, straight wire of radius R caries a current I that is distributed uniformly over the cross-section of the wire. At what distance from the axis of the wire is the magnitude of the magnetic field a maximum?arrow_forwardWhen the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning