College Physics
1st Edition
ISBN: 9781938168048
Author: Paul Peter Urone, OpenStax, Roger Hinrichs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 29, Problem 62PE
(a) If the position of an electron in a membrane is measured to an accuracy of 1.00
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) If the position of a chlorine ion in a membrane is measured to an accuracy of 1.00 µm , what is its minimum uncertainty in velocity, given its mass is 5.86×10-26 kg ?
(b) If the ion has this velocity, what is its kinetic energy in eV, and how does this compare with typical molecular binding energies?
If the position of an electron in a membrane is measured to an accuracy of 3.58 µm, what is the electron's minimum uncertainty in velocity (in m/s)?
a) If the electron has this velocity, what is its kinetic energy in eV?
b) What are the implications of this energy, comparing it to typical molecular binding energies?
Consider the problem of using laser light to measure the distance from the Earth to the moon.
(a) What is the maximum uncertainty in timing the round trip for a light pulse in order to determine the distance with an uncertainty of 1 meter?
(b) Estimate the effect of the Earth’s atmosphere on this experiment, using the fact that the speed of light in air (at sea level) is slower than the speed of light in vacuum by a factor of 1.0003. Assume an 8-km-high atmosphere of uniform sea-level density.
Chapter 29 Solutions
College Physics
Ch. 29 - Give an example of a physical entity that is...Ch. 29 - Give an example of a physical entity that is not...Ch. 29 - What aspect of the blackbody spectrum forced...Ch. 29 - If Planck's constant were large, say 1034 times...Ch. 29 - Why don't we notice quantization in everyday...Ch. 29 - Is visible light the only type of EM radiation...Ch. 29 - Which aspects of the photoelectric effect cannot...Ch. 29 - Is the photoelectric effect a direct consequence...Ch. 29 - Insulators (nonmetals) have a higher BE than...Ch. 29 - If you pick up and shake a piece of metal that has...
Ch. 29 - Why are UV, x rays, and rays called ionizing...Ch. 29 - How can treating food with ionizing radiation help...Ch. 29 - Some television tubes are CRTs. They use an...Ch. 29 - Tanning salons use "safe" UV with a longer...Ch. 29 - Your pupils dilate when visible light intensity is...Ch. 29 - One could feel heat transfer in the form of...Ch. 29 - Can a single microwave photon cause cell damage?...Ch. 29 - In an the maximum photon energy E given by hf=qV....Ch. 29 - Which formula may be used for the momentum of all...Ch. 29 - Is there any measurable difference between the...Ch. 29 - Why don't we feel the momentum of sunlight when we...Ch. 29 - How does the interference of water waves differ...Ch. 29 - Describe one type of evidence for the wave nature...Ch. 29 - Describe one type of evidence for the particle...Ch. 29 - What is the Heisenberg uncertainty principle? Does...Ch. 29 - In what ways are matter and energy related that...Ch. 29 - A LiBr molecule oscillates with a frequency of...Ch. 29 - The difference in energy between allowed...Ch. 29 - A physicist is watching a 15-kg orangutan at a zoo...Ch. 29 - What is the longest-wavelength EM radiation that...Ch. 29 - Find the longest-wavelength photon that can eject...Ch. 29 - What is the binding energy in eV of electrons in...Ch. 29 - Calculate the binding energy in eV of electrons in...Ch. 29 - What is the maximum kinetic energy in eV of...Ch. 29 - UV radiation having a wavelength of 120 nm falls...Ch. 29 - Violet light of wavelength 400 nm ejects electrons...Ch. 29 - UV radiation having a 300-nm wavelength falls on...Ch. 29 - What is the wavelength of EM radiation that ejects...Ch. 29 - Find the wavelength of photons that eject 0.100-eV...Ch. 29 - What is the maximum velocity of electrons ejected...Ch. 29 - Photoelectrons from a material with a binding...Ch. 29 - A laser with a power output of 2.00 mW at a...Ch. 29 - (a) Calculate the number of photoelectrons per...Ch. 29 - Unreasonable Results Red light having a wavelength...Ch. 29 - Unreasonable Results (a) What is the binding...Ch. 29 - What is the energy in joules and eV of a photon in...Ch. 29 - (a) Find the energy in joules and eV of photons in...Ch. 29 - Calculate the frequency in hertz of a 1.00-MeV ...Ch. 29 - (a) What is the wavelength of a 1.00-eV photon?...Ch. 29 - Do the unit conversions necessary to show that...Ch. 29 - Confirm the statement in the text that the range...Ch. 29 - (a) Calculate the energy in eV of an IP photon of...Ch. 29 - Prove that, to three-digit accuracy,...Ch. 29 - (a) What is the maximum energy in eV of photons...Ch. 29 - What is the accelerating voltage of an x-ray tube...Ch. 29 - (a) What is the ratio of power outputs by two...Ch. 29 - How many photons per second are emitted by the...Ch. 29 - Some satellites use nuclear power. (a) If such a...Ch. 29 - (a) If the power output of a 650-kHz radio station...Ch. 29 - How many x-ray photons per second are created by...Ch. 29 - (a) How far away must you be from a 650-kHz radio...Ch. 29 - Assuming that 10.0% of a 100-W light bulb's energy...Ch. 29 - Construct Your Own Problem Consider a laser pen....Ch. 29 - (a) Find the momentum of a 4.00-cm-wavelength...Ch. 29 - (a) What is the momentum of a 0.0100-nm-wavelength...Ch. 29 - (a) What is the wavelength of a photon that has a...Ch. 29 - (a) A -ray photon has a momentum of...Ch. 29 - (a) Calculate the momentum of a photon having a...Ch. 29 - Repeat the previous problem for a...Ch. 29 - (a) Calculate the wavelength of a photon that has...Ch. 29 - (a) Find the momentum of a 100-keV x-ray photon....Ch. 29 - Take the ratio of relativistic rest energy, E=mc2,...Ch. 29 - Construct Your Own Problem Consider a space sail...Ch. 29 - Unreasonable Results A car feels a small force due...Ch. 29 - At what velocity will an electron have a...Ch. 29 - What is the wavelength of an electron moving at...Ch. 29 - At what velocity does a proton have a 6.00-fm...Ch. 29 - What is the velocity of a 0.400-kg billiard ball...Ch. 29 - Find the wavelength of a proton moving at 1.00% of...Ch. 29 - Experiments are performed with ultra-cold neutrons...Ch. 29 - (a) Find the velocity of a neutron that has a...Ch. 29 - What is the wavelength of an electron accelerated...Ch. 29 - What is the kinetic energy of an electron in a TEM...Ch. 29 - (a) Calculate the velocity of an electron that has...Ch. 29 - The velocity of a proton emerging from a Van de...Ch. 29 - The kinetic energy of an electron accelerated in...Ch. 29 - Unreasonable Results (a) Assuming it is...Ch. 29 - (a) If the position of an electron in a membrane...Ch. 29 - (a) If the position of a chlorine ion in a...Ch. 29 - Suppose the velocity of an electron in an atom is...Ch. 29 - The velocity of a proton in an accelerator is...Ch. 29 - A relatively long-lived excited state of an atom...Ch. 29 - (a) The lifetime of a highly unstable nucleus is...Ch. 29 - The decay energy of a short-lived particle has an...Ch. 29 - The decay energy of a short-lived nuclear excited...Ch. 29 - What is the approximate uncertainty in the mass of...Ch. 29 - Derive the approximate form of Heisenberg's...Ch. 29 - Integrated Concepts The 54.0-eV electron in...Ch. 29 - Integrated Concepts An electron microscope...Ch. 29 - Integrated Concepts A certain heat lamp emits 200...Ch. 29 - Integrated Concepts On its high power setting, a...Ch. 29 - Integrated Concepts (a) Calculate the amount of...Ch. 29 - Integrated Concepts (a) What is for an electron...Ch. 29 - Integrated Concepts (a) What is for a proton...Ch. 29 - Integrated Concepts An electron microscope passes...Ch. 29 - Integrated Concepts (a) Calculate the velocity of...Ch. 29 - Integrated Concepts (a) What is the separation...Ch. 29 - Integrated Concepts A laser with a power output of...Ch. 29 - Integrated Concepts One problem with x rays is...Ch. 29 - Integrated Concepts A 1.00-fm photon has a...Ch. 29 - Integrated Concepts The momentum of light is...Ch. 29 - Integrated Concepts Sunlight above the Earth's...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
16. On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The free-fall a...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Colored aleurone in the kernels of com is due to the dominant allele R. The recessive allele r, when homozygous...
Concepts of Genetics (12th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Similar questions
- (a) The x-coordinate of an electron is measured with an uncertainty of 0.30 mm. What is the x-component of the electron’s velocity, vx , if the minimum percent uncertainty in a simultaneous measurement of vx is 1.0%? (b) Repeat part (a) for a proton.arrow_forwardSuppose the position of a chlorine ion in a membrane is measured to an accuracy of 0.75 μm. a) What is its minimum uncertainty in velocity in meters per second, given its mass is 5.86 × 10-26 kg? b) If the ion is measured to have a velocity of 8.9 × 103 m/s, what is the uncertainty in its kinetic energy in electron volts?arrow_forwardA 10.0 g marble is gently placed on a horizontal tabletop that is 1.75 m wide. (a) What is the maximum uncertainty in the horizon- tal position of the marble? (b) According to the Heisenberg uncertainty principle, what is the minimum uncertainty in the horizontal velocity of the marble? (c) In light of your answer to part (b), what is the longest time the marble could remain on the table? Compare this time to the age of the universe, which is approximately 14 billion years. (Hint: Can you know that the horizontal velocity of the marble is exactly zero?)arrow_forward
- (a) The x-coordinate of an electron is measured with an uncer- tainty of 0.30 mm. What is the x-component of the electron’s velocity, vx, if the minimum percent uncertainty in a simultaneous measurement of vx is 1.0%? (b) Repeat part (a) for a proton.arrow_forwardIf an electron’s position can be measured to a precision of 15 nm, what is the uncertainty in its speed?Assuming the minimum speed must be at least equal to itsuncertainty, what is the electron’s minimum kinetic energy?arrow_forward(a) The position of an electron is known to within 14.5 Å (1.45×10-9 m). What is the minimum uncertainty in its velocity?(b) Repeat the calculation of part (a) for a helium atom.arrow_forward
- A rectangular piece of aluminum is 7.60 ± 0.01 cm longand 1.90 ± 0.01 cm wide. Verify that the fractional uncertainty in the area is equal to the sum of the fractional uncertainties in the length and in the width.arrow_forward(a)If the position of a chlorine iron ina membrane is measured to an accuracy of 0.95um, what is its minimum uncertainty in velocity, given its mass is 5.89x10^-26kg? (b) If the ion has this velocity, what is its kinetic energy?arrow_forwardA nucleon (proton or neutron) is confined to a region of space (the nucleus) approximately 10 fm across. Assuming the momentum of a nucleon is roughly equal to the uncertainty in its momentum, estimate the nucleon's kinetic energy. Does this seem like a reasonable result?arrow_forward
- Calculate the minimum uncertainty in the speed of a ball of mass 500 g that is known to be within 1.0 μm of a certain point on a bat. What is the minimum uncertainty in the position of a bullet of mass 5.0 g that is known to have a speed somewhere between 350.000 01 m s−1 and 350.000 00 m s−1?arrow_forwardI need the answer as soon as possiblearrow_forwardThe speed of a proton is measured to within an uncertainty of 1 × 103m/s. Calculate the length of the smallest region of space in which the electron can be confined.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning