Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 55P
To determine
The magnitude of the Earth’s magnetic field at the given location.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an experiment designed to measure the Earth’s magnetic field using the Hall effect, a copper bar 0.500 cm thick is positioned along an east-west direction. Assume it n = 8.46 × 1028 electrons/m3 and the plane of the bar is rotated to be perpendicular to the direction of → B. If a current of 8.00 A in the conductor results in a Hall voltage of 5.10 × 10–12 V, what is the magnitude of the Earth’s magnetic field at this location?
In an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.430 cm thick is positioned
along an east-west direction. Assume n = 8.46 × 1028 electrons/m³ and the plane of the bar is rotated to be perpendicular to the
direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 4.70 x 10-12 V, what is the magnitude of the
Earth's magnetic field at this location?
μT
In an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.470 cm thick is positioned along an east-west direction. Assume n = 8.46 x 1028 electrons/m3 and the plane of the bar is rotated
to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 5.15 x 10-12 v, what is the magnitude of the Earth's magnetic field at this location?
µT
Need Help? Read It
Master It
Chapter 29 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 29.1 - An electron moves in the plane of this paper...Ch. 29.2 - Prob. 29.2QQCh. 29.4 - A wire carries current in the plane of this paper...Ch. 29.5 - (i) Rank the magnitudes of the torques acting on...Ch. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQCh. 29 - Prob. 5OQCh. 29 - Prob. 6OQ
Ch. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 11OQCh. 29 - Prob. 12OQCh. 29 - Prob. 13OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - At the equator, near the surface of the Earth, the...Ch. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Consider an electron near the Earths equator. In...Ch. 29 - Prob. 5PCh. 29 - A proton moving at 4.00 106 m/s through a...Ch. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - A proton travels with a speed of 5.02 106 m/s in...Ch. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - An accelerating voltage of 2.50103 V is applied to...Ch. 29 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 29 - Prob. 16PCh. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. An electron moves in a circular path...Ch. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - A cyclotron designed to accelerate protons has a...Ch. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - A wire carries a steady current of 2.40 A. A...Ch. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Consider the system pictured in Figure P28.26. A...Ch. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - A Hall-effect probe operates with a 120-mA...Ch. 29 - Prob. 55PCh. 29 - Prob. 56APCh. 29 - Prob. 57APCh. 29 - Prob. 58APCh. 29 - Prob. 59APCh. 29 - Prob. 60APCh. 29 - Prob. 61APCh. 29 - Prob. 62APCh. 29 - Prob. 63APCh. 29 - Prob. 64APCh. 29 - Prob. 65APCh. 29 - Prob. 66APCh. 29 - A proton having an initial velocity of 20.0iMm/s...Ch. 29 - Prob. 68APCh. 29 - Prob. 69APCh. 29 - Prob. 70APCh. 29 - Prob. 71APCh. 29 - Prob. 72APCh. 29 - Prob. 73APCh. 29 - Prob. 74APCh. 29 - Prob. 75APCh. 29 - Prob. 76APCh. 29 - Prob. 77CPCh. 29 - Prob. 78CPCh. 29 - Review. A wire having a linear mass density of...Ch. 29 - Prob. 80CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is the kinetic energy of the protons when they are ejected from the cyclotron? (b) What Is this energy in MeV? (c) Through what potential difference would a proton have to be accelerated to acquire this kinetic energy? (d) What is the period of tire voltage source used to accelerate the piotons? (e) Repeat tire calculations for alpha-particles.arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardTutorial Exercise In an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.495 cm thick is positioned along an east-west direction. Assume n = 8.46 × 1028 electrons/m³ and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the -12 conductor results in a Hall voltage of 4.37 x 10 V, what is the magnitude of the Earth's magnetic field at this location? Part 1 of 3 - Conceptualize From this Table of Approximate Magnetic Field Magnitudes, the magnitude of the Earth's magnetic field is about 50 μT. We expect a result with this order of magnitude. Part 2 of 3 - Categorize We will find the magnitude of the magnetic field from the equation for the Hall effect voltage. Part 3 of 3 - Analyze Hall effect voltage is given by the following. IB nqt' AVH where I is the current, n is the volume density of electrons, B is the magnitude of the magnetic field, and t is the thickness of the copper bar. Solving…arrow_forward
- In an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.560 cm thick is positioned along an east–west direction. Assume n = 8.46 × 1028 electrons/m3 and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 4.30 10-12 V, what is the magnitude of the Earth's magnetic field at this location?arrow_forwardIn an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.410 cm thick is positioned along an east-west direction. Assume n = 8.46 x 1028 electrons/m and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 4.70 * 10-12 V, what is the magnitude of the Earth's magnetic field at this location? HT Need Help? Read It Master Itarrow_forwardA positive charge of size q=3,2.10-19 C moves at a speed of V = 3i + 2j-4k m / s in the region where a smooth magnetic field and a smooth electric field coexist. If B = (2i+j+3k) T and E = (5i-2j-k) V / m, calculate the magnitude of the total force acting on the moving load. (b) What is the angle of the resultant force with the + x axis?arrow_forward
- A Hall probe serves to measure magnetic field strength. One such probe consists of a poor conductor 0.135 mm thick, whose charge‑carrier density is 1.01×1025 m−3. When a 1.97 A current flows through the probe, the Hall voltage is measured to be 4.29 mV. The elementary charge ?=1.602×10−19 C. What is the magnetic field strength ??arrow_forwardQ#02. A strip of copper 150um thick and 45cm wide is placed in a uniform magnetic field B of magnitude 0.85T, with B perpendicular to the strip. A current i = 2.3 mA is then sent to the strip such that a Hall potential difference V appears across the width of the strip. Calculate V. (the number of charge carriers per unit volume for copper is 8.47×108electrons/m³).arrow_forwardA Hall probe serves to measure magnetic field strength. One such probe consists of a poor conductor 0.121 mm thick, whose charge‑carrier density is 1.27×1025 m−3. When a 1.77 A current flows through the probe, the Hall voltage is measured to be 3.15 mV. The elementary charge e=1.602×10−19 C. What is the magnetic field strength B?arrow_forward
- Answer fastarrow_forwardTutorial Exercise In an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.415 cm thick is positioned along an east-west direction. Assume n = 8.46 x 1028 electrons/m3 and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 5.52 x 10-12 v, what is the magnitude of the Earth's magnetic field at this location?arrow_forwardIn a Bainbridge mass spectrometer (Figure 1), ions pass through the electromagnetic field of a velocity selector and are then deflected by a magnetic field. Knowing that E = 3.1 × 105 V/m and that B1 = B2 = 0.32 T, calculate the difference of the positions on the photographic plate for the ions of charge q = e of the nitrogen isotopes of masses 14 u and 15 u. Note that 1 u = 1.661 × 10-27 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning