College Physics
College Physics
10th Edition
ISBN: 9781285761954
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 51AP

(a)

To determine

The number of moles of C11.

(a)

Expert Solution
Check Mark

Answer to Problem 51AP

The number of moles of C11 is 3.18×107mol.

Explanation of Solution

Given Info: The sample contains 3.5μg of C11. Half-life of C11 is 20.4 min.

Formula to calculate the number of moles of C11 is,

n=mmCNA

  • m is the mass of the sample.
  • mC is the mass of C11.
  • NA is the Avogadro number.

Substitute 3.5μg for m, 11.011 u for mC and 6.022×1023atoms/mol for NA.

n=3.5μg(11.011u)(6.022×1023atoms/mol)=3.5×106g(11.011u)(1.661×1027kg/u)(6.022×1023atoms/mol)=3.18×107mol

Conclusion:

The number of moles of C11 is 3.18×107mol.

(b)

To determine

The initial number of nuclei.

(b)

Expert Solution
Check Mark

Answer to Problem 51AP

The initial number of nuclei is 1.91×1017.

Explanation of Solution

Given Info: The sample contains 3.5μg of C11. Half-life of C11 is 20.4 min.

Formula to calculate the initial number of nuclei is,

N0=nNA

Substitute 3.18×107mol for n and 6.022×1023atoms/mol for NA.

N0=(3.18×107mol)(6.022×1023atoms/mol)=1.91×1017

Conclusion:

The initial number of nuclei is 1.91×1017.

(c)

To determine

The initial activity.

(c)

Expert Solution
Check Mark

Answer to Problem 51AP

The initial activity is 1.08×1014Bq.

Explanation of Solution

Given Info: The sample contains 3.5μg of C11. Half-life of C11 is 20.4 min.

Formula to calculate the initial activity is,

R0=N0ln2t1/2

  • t1/2 is the half-life.

Substitute 1.91×1017 for N0 and 20.4 min for t1/2

R0=(1.91×1017)ln220.4min=(1.91×1017)ln2(20.4min)(60s1min)=1.08×1014Bq

Conclusion:

The initial activity is 1.08×1014Bq.

(d)

To determine

The activity after 8.0 h.

(d)

Expert Solution
Check Mark

Answer to Problem 51AP

The activity after 8.0 h is 8.92×106Bq.

Explanation of Solution

Given Info: The sample contains 3.5μg of C11. Half-life of C11 is 20.4 min.

Formula to calculate the activity after 8.0 h is,

R=R0exp[(tt1/2)ln2]

  • t1/2 is the half-life.

Substitute 1.08×1014Bq for R0, 8.0 h for t and 20.4 min for t1/2

R=(1.08×1014Bq)exp[(8.0h20.4min)ln2]=(1.08×1014Bq)exp[(8.0h(20.4min)(1h60min))ln2]=8.92×106Bq

Conclusion:

The activity after 8.0 h is 8.92×106Bq

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.
A ray of light from an object you want to look at strikes a mirror so that the light ray makes a 32 degree angle relative to the normal line (a line perpendicular to the surface of the mirror at the point where the ray strikes the mirror). If you want to see the object in the mirror, what angle does your line of sight need to make relative to the normal line? Give your answer as the number of degrees.
Suppose you have a converging lens with a focal length of 65 cm. You hold this lens 120 cm away from a candle. How far behind the lens should you place a notecard if you want to form a clear image of the candle, on the card? Give your answer as the number of centimeters.

Chapter 29 Solutions

College Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning