
Concept explainers
The missing values in the given table.

Answer to Problem 4PP
Primary | Secondary | Load |
EP = 23000 V | EP = 120 V | EP = 208 V |
IP = 0.626A | IP = 120.08 A | IP = 69.33 A |
EL = 23000 V | EL = 208 V | EL = 208 V |
IL = 1.084 A | IL = 120.08 A | IL = 120.08 A |
Ratio = 191.52:1 | Z = 3 Ω |
Explanation of Solution
In the figure, three single-phase transformers have been connected to form a delta–wye bank.
The primary is connected to a three-phase line of 23000 V.
The secondary voltage is 208 V.
A three-phase resistive load with an impedance of 3 Ω per phase is connected to the secondary of the transformer.
The primary windings of the three single-phase transformers are connected to form a delta connection. In a delta connection, the phase voltage is equal to line voltage.
The secondary windings are connected as a wye. In a wye connection, the phase voltage is less than the line voltage by a factor of 1.732 (the square root of 3). Therefore, the phase value of the primary voltage can be calculated using the formula
The turns ratio can be calculated by comparing the phase voltage of the primary with the phase voltage of the secondary:
The load is connected directly to the output of the secondary. The line voltage applied to the load must therefore be the same as the line voltage of the secondary:
The load bank is connected in a delta connection. The voltage across the phase of the load bank will equal to the line voltage.
The phase current of the load can be calculated using Ohm’s law:
The amount of line current supplying a delta-connected load will be 1.732 times the phase current of the load:
Since the secondary of the transformer is supplying current to only one load, the line current of the secondary will be the same as the line current of the load:
The phase current in a wye connection is equal to the line current.
The phase current of the transformer primary can now be calculated using the phase current of the secondary and the turns ratio. Because the primary has a higher voltage than the secondary, it will have a lower current. (Volts times amperes input must equal volts times amperes output.)
All the transformed values of voltage and current take place across the phases, the primary has a phase current of 6.68 A. In a delta connection, the line current is 1.732 times the phase current:
Want to see more full solutions like this?
Chapter 29 Solutions
Mindtap Electrical, 4 Terms (24 Months) Printed Access Card For Herman's Delmar's Standard Textbook Of Electricity, 6th (mindtap Course List)
- Please answer all You and your crew have made it through the night and the day has brought more warmth. After searching the industrial site, you find an abundant amount of fuel to run the generators to keep you warm. You also find a memory card labelled “cure”, but your cell phone battery is dead. First things first, you will need to stay safe as the zombies continue to hunt you in your current location. The industrial site is surrounded by a metal chain-link fence. You decide you will electrify the fence to keep the zombies from scaling it. But the output voltage from the generators is not high enough to really deter them. You would like to apply around 10 kV to the fence (AC or DC, at that voltage it doesn’t really matter). You find a transformer that you can use but it only has a turn ratio of 10. You find some diodes and capacitors and construct the circuit shown in Figure 3 with the intention of hooking Vout to the fence. 1. Perform a circuit JS simulation, displaying…arrow_forward2. A three-phase transformer connection Yy, 2000 kVA, 20000/6000 V has the relative short-circuit voltages Ecc = 7% and ERcc = 1.7%.It is known that when empty this transformer consumes a power Po = 12.24 kW. Calculate:a. Parameters Zcc, Rcc, Xcc, referring to the primary and EXcc.b. If the transformer is connected at rated voltage and feeds a load of 1800 kVA, fp = 0.8, calculate the line voltage at the secondary.c. The maximum apparent power, and the maximum efficiency fp = 0.8 inductive. Perform the exercise by the collaborators and without using artificial intelligence pleasearrow_forward1. A three-phase transformer with Yd connection, 300 kVA, 12000/220 V, has been short-circuit tested on the high voltage side giving the following results: 750 V, 14.434 A, 10838 W.When the transformer is connected to nominal voltage without load it consumes 5400W. Calculate:to. Relative voltages of short circuit high voltage side: εcc, εRcc and εXcc.b. The voltage in the secondary when the transformer is connected to nominal voltage and feeds a load of 200 kW fp = 0.8 in delay.c. Apparent power of maximum efficiency and maximum efficiency with fp = 0.95 inductive. Please solve for one of the collaborators and without using artificial intelligencearrow_forward
- Find value of load resistance RL that can be connected to terminals a-b for maximum power transfer. Also calculate the maximum power that can be delivered to load RL.arrow_forwardA modulating signal f(t) is bandlimited to 5 kHz is sampled at a rate of 15000 samples/sec. The samples are quantized into 128 levels. Calculate the transmission bandwidth if the following modulation types are used for signal transmission: 4- ASK 5- 8-PSK 6- FSK with Af = 25 kHzarrow_forwardDraw the Split-Phase Manchester code for the follow ng binary data: (1001010110)arrow_forward
- 11.54 For the network in Fig. 11.73, find the complex power absorbed by each element. 120/-20° V Figure 11.73 For Prob. 11.54. | + -1302 j5Q 4 Ωarrow_forwardFind a value of RL that can be connected to terminals a-b for maximum power transfer. Then, calculate maximum power that can be delivered to load RL.arrow_forwardA modulating signal f(t) is bandlimited to 5 kHz is sampled at a rate of 15000 samples/sec. The samples are quantized into 128 levels. Calculate the transmission bandwidth if the following modulation types are used for signal transmission: 4- ASK 5- 8-PSK 6- FSK with Af = 25 kHzarrow_forward
- A modulating signal f(t) is bandlimited to 5 kHz is sampled at a rate of 15000 samples/sec. The samples are quantized into 128 levels. Calculate the transmission bandwidth if the following modulation types are used for signal transmission: 4- ASK 5- 8-PSK 6- FSK with Af = 25 kHzarrow_forwardDon't use ai to answer I will report you answerarrow_forwardjan G(f) f Sketch the spectrum of g(t), which has a maximum frequency of 5 kHz, if it is sampled at the following sampling frequencies: 7 kHz, 10 kHz and 15 kHz. Indicate if and how the signal can be recovered at each sampling frequency.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





