
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780136139225
Author: Douglas C. Giancoli
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 3P
To determine
The direction of induced current in the loop.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all steps
Make up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.
A straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.
Chapter 29 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 29.1 - Return to the Chapter-Opening Question, page 758,...Ch. 29.2 - Prob. 1BECh. 29.3 - In what direction will the electrons now in Fig....Ch. 29.5 - A bicycle headlight is powered by a generator that...Ch. 29.7 - Prob. 1EECh. 29 - Prob. 1QCh. 29 - What is the difference between magnetic flux and...Ch. 29 - Suppose you are holding a circular ring of wire...Ch. 29 - Prob. 4QCh. 29 - Is there a force between the two loops discussed...
Ch. 29 - Suppose you are looking along a line through the...Ch. 29 - The battery mentioned in Question 6 is...Ch. 29 - Prob. 8QCh. 29 - Prob. 9QCh. 29 - In situations where a small signal must travel...Ch. 29 - What is the advantage of placing the two insulated...Ch. 29 - Prob. 12QCh. 29 - A region where no magnetic field is desired is...Ch. 29 - A cell phone charger contains a transformer. Why...Ch. 29 - An enclosed transformer has four wire leads coming...Ch. 29 - The use of higher-voltage lines in homessay, 600 V...Ch. 29 - Prob. 17QCh. 29 - Prob. 18QCh. 29 - Prob. 19QCh. 29 - Will an eddy current brake (Fig. 2921) work on a...Ch. 29 - It has been proposed that eddy currents be used to...Ch. 29 - The pivoted metal bar with slots in Fig. 2935...Ch. 29 - If an aluminum sheet is held between the poles of...Ch. 29 - A bar magnet falling inside a vertical metal tube...Ch. 29 - A metal bar, pivoted at one end, oscillates freely...Ch. 29 - Since a magnetic microphone is basically like a...Ch. 29 - Prob. 1PCh. 29 - (I) The north pole of the magnet in Fig. 2936 is...Ch. 29 - Prob. 3PCh. 29 - (I) A 22.0-cm-diameter loop of wire is initially...Ch. 29 - Prob. 5PCh. 29 - (II) A 10.8-cm-diameter wire coil is initially...Ch. 29 - (II) A 16-cm-diameter circular loop of wire is...Ch. 29 - (II) (a) If the resistance of the resistor in Fig....Ch. 29 - Prob. 9PCh. 29 - (II) The magnetic field perpendicular to a...Ch. 29 - (II) A circular loop in the plane of the paper...Ch. 29 - (II) Part of a single rectangular loop of wire...Ch. 29 - (II) While demonstrating Faradays law to her...Ch. 29 - Prob. 14PCh. 29 - (II) A 22.0-cm-diameter coil consists of 28 turns...Ch. 29 - (II) A power line carrying a sinusoidally varying...Ch. 29 - (II) The magnetic field perpendicular to a single...Ch. 29 - Prob. 18PCh. 29 - (II) A 25-cm-diameter circular loop of wire has a...Ch. 29 - (II) The area of an elastic circular loop...Ch. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - (II) Inductive battery chargers, which allow...Ch. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - (I) The moving rod in Fig. 2912b is 13.2 cm long...Ch. 29 - (I) The moving rod in Fig. 2912b is 12.0 cm long...Ch. 29 - Prob. 29PCh. 29 - (II) If the U-shaped conductor in Fig. 2912a has...Ch. 29 - (II) Suppose that the U-shaped conductor and...Ch. 29 - (II) When a car drives through the Earths magnetic...Ch. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - (III) A short section of wire, of length a, is...Ch. 29 - (I) The generator of a car idling at 875-rpm...Ch. 29 - Prob. 37PCh. 29 - (II) A simple generator has a 480-loop square coil...Ch. 29 - (II) Show that the rms output of an ac generator...Ch. 29 - (II) A 250-loop circular armature coil with a...Ch. 29 - Prob. 41PCh. 29 - (I) A motor has an armature resistance of 3.05 ....Ch. 29 - (II) What will be the current in the motor of...Ch. 29 - (II) The back emf in a motor is 85 V when the...Ch. 29 - Prob. 45PCh. 29 - (I) A transformer has 620 turns in the primary...Ch. 29 - (I) Neon signs require 12 kV for their operation....Ch. 29 - (II) A model-train transformer plugs into 120-V ac...Ch. 29 - (II) The output voltage of a 75-W transformer is...Ch. 29 - (II) If 65 MW of power at 45 kV (rms) arrives at a...Ch. 29 - Prob. 51PCh. 29 - (III) Design a dc transmission line that can...Ch. 29 - (III) Suppose 85 kW is to be transmitted over two...Ch. 29 - Prob. 54PCh. 29 - (II) The betatron, a device used to accelerate...Ch. 29 - (III) Show that the electrons in a betatron,...Ch. 29 - (III) Find a formula for the net electric field in...Ch. 29 - Prob. 58GPCh. 29 - A square loop 27.0 cm on a side has a resistance...Ch. 29 - Power is generated at 24 kV at a generating plant...Ch. 29 - Prob. 61GPCh. 29 - Prob. 62GPCh. 29 - A pair of power transmission lines each have a...Ch. 29 - Show that the power loss in transmission lines,...Ch. 29 - A high-intensity desk lamp is rated at 35 W but...Ch. 29 - Prob. 66GPCh. 29 - A coil with 150 turns, a radius of 5.0 cm, and a...Ch. 29 - A search coil for measuring B (also called a flip...Ch. 29 - A ring with a radius of 3.0 cm and a resistance of...Ch. 29 - A flashlight can be made that is powered by the...Ch. 29 - A small electric car overcomes a 250-N friction...Ch. 29 - What is the energy dissipated as a function of...Ch. 29 - A thin metal rod of length rotates with angular...Ch. 29 - The magnetic field of a shunt-wound dc motor is...Ch. 29 - Prob. 75GPCh. 29 - A circular metal disk of radius R rotates with...Ch. 29 - What is the magnitude and direction of the...Ch. 29 - Prob. 78GPCh. 29 - Prob. 79GPCh. 29 - Prob. 80GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
- A circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forwardA 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit. Find the direction of the current induced in the circuit. Calculate the current through the resistor.arrow_forward
- In the figure, a conducting rod with length L = 29.0 cm moves in a magnetic field B→ of magnitude 0.510 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. When the charges in the rod are in equilibrium, which point, a or b, has an excess of positive charge and where does the electric field point? What is the magnitude E of the electric field within the rod, the potential difference between the ends of the rod, and the magnitude E of the motional emf induced in the rod? Which point has a higher potential? Please explain all stepsarrow_forwardExamine the data and % error values in Data Table 2 where the mass of the pendulum bob increased but the angular displacement and length of the simple pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the mass of the pendulum bob, to within a reasonable percent error.arrow_forwardPlease graph, my software isn't working - Data Table 4 of Period, T vs √L . (Note: variables are identified for graphing as y vs x.) On the graph insert a best fit line or curve and display the equation on the graph. Thank you!arrow_forward
- I need help with problems 93 and 94arrow_forwardSince the instruction says to use SI units with the correct sig-fig, should I only have 2 s for each trial in the Period column? Determine the theoretical period of the pendulum using the equation T= 2π √L/g using the pendulum length, L, from Data Table 2. Calculate the % error in the periods measured for each trial in Data Table 2 then recordarrow_forwardA radiography contingent are carrying out industrial radiography. A worker accidentally crossed a barrier exposing themselves for 15 seconds at a distance of 2 metres from an Ir-192 source of approximately 200 Bq worth of activity. What dose would they have received during the time they were exposed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning