
(a)
Find the current through the emf device and each resistor in circuit 1.
(a)

Answer to Problem 39PQ
The current through the Emf device and each resistor in circuit 1 is
Explanation of Solution
According to Kirchhoff’s junction rule, in any junction, the sum of the all the currents entering the junction equals the sum of all the currents exiting the junction.
Redraw the circuit 1 and labeled it as given below
In parallel circuit, voltage across all three resistors is same that means potential difference between node A and node B is same (
According to Ohm’s law,
Here,
Rearrange the equation (I) in terms of total current
Write the expression for equivalent resistance as.
Rearrange the above expression.
Write the expression for current
Here,
Write the expression for current
Here,
Write the expression for current
Here,
Conclusion:
Substitute
Substitute
Substitute
Thus, the current in circuit 1 is
Substitute
Substitute
Substitute
Thus, the current through the Emf device and each resistor in circuit 1 is
(b)
Find the current through the emf device and each resistor in circuit 2 refer to figure P29.28.
(b)

Answer to Problem 39PQ
The current through the Emf device and each resistor in circuit 2 is
Explanation of Solution
According to Kirchhoff’s junction rule, in any junction, the sum of the all the currents entering the junction equals the sum of all the currents exiting the junction.
Redraw the circuit 2 and labeled it as given below.
In parallel circuit 2, voltage across all three resistors is same that means potential difference between node a and node b, node c & node d and node e & node f are same
Write the expression for current
Here,
Write the expression for current
Here,
Write the expression for current
Here,
Conclusion:
Substitute
Substitute
Substitute
Thus, the current in circuit 1 is
Substitute
Substitute
Substitute
Thus, the current for the given circuit resistance is
Want to see more full solutions like this?
Chapter 29 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





