Bundle: College Physics, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
Bundle: College Physics, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
11th Edition
ISBN: 9781337741569
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 38P

(a)

To determine

The mass of the particles on the left side.

(a)

Expert Solution
Check Mark

Answer to Problem 38P

The mass of the particles on the left side is 8.023829 u.

Explanation of Solution

The mass of the particles on the left side is,

mi=m(H11)+m(L73i)

  • m(H11) is the mass of H11.
  • m(L73i) is the mass of L73i.

Substitute 1.007825 u for m(H11) and 7.016004 u for m(L73i).

mi=(1.007825 u)+(7.016004 u)=8.023829 u

Conclusion:

The mass of the particles on the left side is 8.023829 u.

(b)

To determine

The mass of the particles on the right side.

(b)

Expert Solution
Check Mark

Answer to Problem 38P

The mass of the particles on the right side is 8.025594 u.

Explanation of Solution

The mass of the particles on the left side is,

mf=m(B71e)+m(n10)

  • m(B71e) is the mass of B71e.
  • m(n10) is the mass of n10.

Substitute 7.016929 u for m(B71e) and 1.008665 u for m(n10).

mf=(7.016929 u)+(1.008665u)=8.025594 u

Conclusion:

The mass of the particles on the right side is 8.025594 u.

(c)

To determine

The Q-value.

(c)

Expert Solution
Check Mark

Answer to Problem 38P

The Q-value is 1.64MeV.

Explanation of Solution

Formula to calculate the Q-value is,

Q=(mimf)c2

  • c is the speed of light.

Substitute 8.023829 u for mi, 8.025594 u for mf and 931.5 MeV/u for c2.

Q=[(8.023829 u)(8.025594 u)](931.5MeV/u)=1.64MeV

Conclusion:

The Q-value is 1.64MeV.

(d)

To determine

The expression describing the law of conservation of momentum.

(d)

Expert Solution
Check Mark

Answer to Problem 38P

The expression describing the law of conservation of momentum is mpv=(mBe+mn)V

Explanation of Solution

Formula to calculate the initial momentum is,

pi=mpv      (I)

Formula to calculate the final momentum is,

pf=mBeV+mnV=(mBe+mn)V      (II)

From Law of conservation of momentum,

pi=pf      (III)

Substitute Equations (I) and (II) in (III).

mpv=(mBe+mn)V

Conclusion:

The expression describing the law of conservation of momentum is mpv=(mBe+mn)V

(e)

To determine

The expression relating the kinetic energies of the particles.

(e)

Expert Solution
Check Mark

Answer to Problem 38P

The expression relating the kinetic energies of the particles is 12mpv2+Q=12(mBe+mn)V2

Explanation of Solution

Formula to calculate the initial kinetic energy is,

KEi=12mpv2+Q      (IV)

Formula to calculate the final kinetic energy is,

KEf=12(mBe+mn)V2      (V)

From Law of conservation of energy,

KEi=KEf      (VI)

Substitute Equations (IV) and (V) in (VI).

12mpv2+Q=12(mBe+mn)V2

Conclusion:

The expression relating the kinetic energies of the particles is 12mpv2+Q=12(mBe+mn)V2

(f)

To determine

The minimum kinetic energy of the proton.

(f)

Expert Solution
Check Mark

Answer to Problem 38P

The minimum kinetic energy of the proton is 1.88 MeV.

Explanation of Solution

Formula to calculate the minimum kinetic energy of the proton is,

KEmin=(1+m(H11)m(L73i))|Q|

Substitute 1.007825 u for m(H11), 7.016004 u for m(L73i) and 1.64MeV for Q.

KEmin=(1+1.007825 u7.016004 u)|1.64MeV|=(1+1.007825 u7.016004 u)(1.64MeV)=1.88MeV

Conclusion:

The minimum kinetic energy of the proton is 1.88 MeV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?
A 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuit
A ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.

Chapter 29 Solutions

Bundle: College Physics, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College