COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 29, Problem 2CQ
Give an example of a physical entity that is not quantized, in that it is continuous and may have a continuous range of values.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100.
Part A
What is the minimum force the nurse needs to apply to the syringe?
Express your answer with the appropriate units.
View Available Hint(s)for Part A
Hint 1for Part A. How to approach the question
The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.
A 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100.
Part A
What is the minimum force the nurse needs to apply to the syringe?
Express your answer with the appropriate units.
View Available Hint(s)for Part A
Hint 1for Part A. How to approach the question
The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.
Is a scientific theory supposed to just be someone's idea about something
Chapter 29 Solutions
COLLEGE PHYSICS
Ch. 29 - Give an example of a physical entity that is...Ch. 29 - Give an example of a physical entity that is not...Ch. 29 - What aspect of the blackbody spectrum forced...Ch. 29 - If Planck's constant were large, say 1034 times...Ch. 29 - Why don't we notice quantization in everyday...Ch. 29 - Is visible light the only type of EM radiation...Ch. 29 - Which aspects of the photoelectric effect cannot...Ch. 29 - Is the photoelectric effect a direct consequence...Ch. 29 - Insulators (nonmetals) have a higher BE than...Ch. 29 - If you pick up and shake a piece of metal that has...
Ch. 29 - Why are UV, x rays, and rays called ionizing...Ch. 29 - How can treating food with ionizing radiation help...Ch. 29 - Some television tubes are CRTs. They use an...Ch. 29 - Tanning salons use "safe" UV with a longer...Ch. 29 - Your pupils dilate when visible light intensity is...Ch. 29 - One could feel heat transfer in the form of...Ch. 29 - Can a single microwave photon cause cell damage?...Ch. 29 - In an the maximum photon energy E given by hf=qV....Ch. 29 - Which formula may be used for the momentum of all...Ch. 29 - Is there any measurable difference between the...Ch. 29 - Why don't we feel the momentum of sunlight when we...Ch. 29 - How does the interference of water waves differ...Ch. 29 - Describe one type of evidence for the wave nature...Ch. 29 - Describe one type of evidence for the particle...Ch. 29 - What is the Heisenberg uncertainty principle? Does...Ch. 29 - In what ways are matter and energy related that...Ch. 29 - A LiBr molecule oscillates with a frequency of...Ch. 29 - The difference in energy between allowed...Ch. 29 - A physicist is watching a 15-kg orangutan at a zoo...Ch. 29 - What is the longest-wavelength EM radiation that...Ch. 29 - Find the longest-wavelength photon that can eject...Ch. 29 - What is the binding energy in eV of electrons in...Ch. 29 - Calculate the binding energy in eV of electrons in...Ch. 29 - What is the maximum kinetic energy in eV of...Ch. 29 - UV radiation having a wavelength of 120 nm falls...Ch. 29 - Violet light of wavelength 400 nm ejects electrons...Ch. 29 - UV radiation having a 300-nm wavelength falls on...Ch. 29 - What is the wavelength of EM radiation that ejects...Ch. 29 - Find the wavelength of photons that eject 0.100-eV...Ch. 29 - What is the maximum velocity of electrons ejected...Ch. 29 - Photoelectrons from a material with a binding...Ch. 29 - A laser with a power output of 2.00 mW at a...Ch. 29 - (a) Calculate the number of photoelectrons per...Ch. 29 - Unreasonable Results Red light having a wavelength...Ch. 29 - Unreasonable Results (a) What is the binding...Ch. 29 - What is the energy in joules and eV of a photon in...Ch. 29 - (a) Find the energy in joules and eV of photons in...Ch. 29 - Calculate the frequency in hertz of a 1.00-MeV ...Ch. 29 - (a) What is the wavelength of a 1.00-eV photon?...Ch. 29 - Do the unit conversions necessary to show that...Ch. 29 - Confirm the statement in the text that the range...Ch. 29 - (a) Calculate the energy in eV of an IP photon of...Ch. 29 - Prove that, to three-digit accuracy,...Ch. 29 - (a) What is the maximum energy in eV of photons...Ch. 29 - What is the accelerating voltage of an x-ray tube...Ch. 29 - (a) What is the ratio of power outputs by two...Ch. 29 - How many photons per second are emitted by the...Ch. 29 - Some satellites use nuclear power. (a) If such a...Ch. 29 - (a) If the power output of a 650-kHz radio station...Ch. 29 - How many x-ray photons per second are created by...Ch. 29 - (a) How far away must you be from a 650-kHz radio...Ch. 29 - Assuming that 10.0% of a 100-W light bulb's energy...Ch. 29 - Construct Your Own Problem Consider a laser pen....Ch. 29 - (a) Find the momentum of a 4.00-cm-wavelength...Ch. 29 - (a) What is the momentum of a 0.0100-nm-wavelength...Ch. 29 - (a) What is the wavelength of a photon that has a...Ch. 29 - (a) A -ray photon has a momentum of...Ch. 29 - (a) Calculate the momentum of a photon having a...Ch. 29 - Repeat the previous problem for a...Ch. 29 - (a) Calculate the wavelength of a photon that has...Ch. 29 - (a) Find the momentum of a 100-keV x-ray photon....Ch. 29 - Take the ratio of relativistic rest energy, E=mc2,...Ch. 29 - Construct Your Own Problem Consider a space sail...Ch. 29 - Unreasonable Results A car feels a small force due...Ch. 29 - At what velocity will an electron have a...Ch. 29 - What is the wavelength of an electron moving at...Ch. 29 - At what velocity does a proton have a 6.00-fm...Ch. 29 - What is the velocity of a 0.400-kg billiard ball...Ch. 29 - Find the wavelength of a proton moving at 1.00% of...Ch. 29 - Experiments are performed with ultra-cold neutrons...Ch. 29 - (a) Find the velocity of a neutron that has a...Ch. 29 - What is the wavelength of an electron accelerated...Ch. 29 - What is the kinetic energy of an electron in a TEM...Ch. 29 - (a) Calculate the velocity of an electron that has...Ch. 29 - The velocity of a proton emerging from a Van de...Ch. 29 - The kinetic energy of an electron accelerated in...Ch. 29 - Unreasonable Results (a) Assuming it is...Ch. 29 - (a) If the position of an electron in a membrane...Ch. 29 - (a) If the position of a chlorine ion in a...Ch. 29 - Suppose the velocity of an electron in an atom is...Ch. 29 - The velocity of a proton in an accelerator is...Ch. 29 - A relatively long-lived excited state of an atom...Ch. 29 - (a) The lifetime of a highly unstable nucleus is...Ch. 29 - The decay energy of a short-lived particle has an...Ch. 29 - The decay energy of a short-lived nuclear excited...Ch. 29 - What is the approximate uncertainty in the mass of...Ch. 29 - Derive the approximate form of Heisenberg's...Ch. 29 - Integrated Concepts The 54.0-eV electron in...Ch. 29 - Integrated Concepts An electron microscope...Ch. 29 - Integrated Concepts A certain heat lamp emits 200...Ch. 29 - Integrated Concepts On its high power setting, a...Ch. 29 - Integrated Concepts (a) Calculate the amount of...Ch. 29 - Integrated Concepts (a) What is for an electron...Ch. 29 - Integrated Concepts (a) What is for a proton...Ch. 29 - Integrated Concepts An electron microscope passes...Ch. 29 - Integrated Concepts (a) Calculate the velocity of...Ch. 29 - Integrated Concepts (a) What is the separation...Ch. 29 - Integrated Concepts A laser with a power output of...Ch. 29 - Integrated Concepts One problem with x rays is...Ch. 29 - Integrated Concepts A 1.00-fm photon has a...Ch. 29 - Integrated Concepts The momentum of light is...Ch. 29 - Integrated Concepts Sunlight above the Earth's...Ch. 29 - Prob. 1TPCh. 29 - Prob. 2TPCh. 29 - Prob. 3TPCh. 29 - Prob. 4TPCh. 29 - Prob. 5TPCh. 29 - Prob. 6TPCh. 29 - Prob. 7TPCh. 29 - Prob. 8TPCh. 29 - Prob. 9TPCh. 29 - Prob. 10TPCh. 29 - Prob. 11TPCh. 29 - Prob. 12TPCh. 29 - Prob. 13TPCh. 29 - Prob. 14TPCh. 29 - Prob. 15TPCh. 29 - Prob. 16TPCh. 29 - Prob. 17TPCh. 29 - Prob. 18TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
Describe the lytic and lysogenic life cycles of bacteriophage. What roles do repressor and Cro protein play i...
Genetic Analysis: An Integrated Approach (3rd Edition)
Why is it necessary to be in a pressurized cabin when flying at 30,000 feet?
Anatomy & Physiology (6th Edition)
Sketch the following spectra that would be obtained for 2-chloroethanol: a. The 1H NMR spectrum for an anhydrou...
Organic Chemistry (8th Edition)
Another cross in Drosophila involved the recessive, X-linked genes yellow (y), white (w), and cut (ct). A yello...
Concepts of Genetics (12th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Similar questions
- what is the agenda of physicsarrow_forwardWatch the video of Cooper’s play, while conducting and documenting your observation using a chosen observation tool. Case Study 1b - Cooper Carol has asked you to support the babies and toddler’s room educators this week. She has requested that you complete an observation on Cooper, who is a 10-month-old toddler. Carol wants to see how well you conduct an observation and is interested in how you manage to communicate in any observations made, using a strengths-based, non-judgemental, anti-biased approach, as this is a fundamental part of creating a supportive and respectful culture at Little Catalysts ELC. Video: Cooper's play (6:45 min) Resources Module 7 eLearns Template: Learning story observation, Section 1 Template: Running record observation, Section 1 Template: Anecdotal record observation, Section 1 Video: Cooper's play (6:45 min) Complete and upload an observation of Cooper to support educators in future curriculum planning. Choose one (1) of the observation…arrow_forward1. An ideal gas is taken through a four process cycle abcda. State a has a pressure of 498,840 Pa. Complete the tables and plot/label all states and processes on the PV graph. Complete the states and process diagrams on the last page. Also, provide proper units for each column/row heading in the tables. Pressure (Pa) 500,000 450,000 400,000 350,000 300,000 250,000 200,000 150,000 100,000 Process ab bc cd da States P( ) V( ) 50,000 0 0.000 T = 500 K T= 200 K 0.001 0.002 0.003 0.004 0.005 Volume (m^3) Nature of Process isothermal expansion to Vb = 0.005 m³ (T = 500 K) isometric isothermal compression to V₁ = 0.003 m³ (T = 200 K) adiabatic compression to VA = 0.001 m³ b C a T() U ( ) Processes a-b Q( ) +802.852 W() AU ( ) b-c c→d +101.928 da Cyclearrow_forward
- Plz no chatgpt Iarrow_forwardA = 45 kN a = 60° B = 20 kN ẞ = 30° Problem:M1.1 You and your friends are on an archaeological adventure and are trying to disarm an ancient trap to do so you need to pull a log straight out of a hole in a wall. You have 1 rope that you can attach to the log and there are currently 2 other ropes and weights attached to the end of the log. You know the force and direction of the ropes currently attached are arranged as shown below what is the magnitude and direction 'e' of the minimum force you need to apply to the third rope for the force on the log to be in direction of line 'a'? What is the resultant force in direction 'a'? a ////// //////arrow_forwardanswer both questionsarrow_forward
- - 13- 3. Shastri recalled reading that for an ideal transformer, "the ratio of the primary voltage to the secondary voltage is equal to the ratio of the secondary current to the primary current." Plan and design an experiment to investigate whether the statement above is true. (8) • With the aid of a fully labelled circuit diagram, describe a procedure which can be used to investigate whether the statement is true. The circuit diagram must include the following components: A variable AC voltage supply • AC voltmeters • AC ammeters A transformer with adjustable turns ratio Connecting wires • ° A load resistorarrow_forwardanswer question 1-6arrow_forwardFractions 1. Covert 5/7 to a decimal 2. 5/7 x 3/8 3. 2/5 divided 4/9 4. covert 37/ 19 to a decimalarrow_forward
- this is an exam past paper question that i need help with becuase i am reviewing not a graded assignmentarrow_forwardsunny (1) -13- end. One box contains nothing inside; one has a piece of resistance wire between the terminals You are provided with three sealed identical matchboxes labelled A, B and C, with terminals at each and the other, a semi-conductor diode. Plan and design an experiment to identify the contents of each box. You are provided with the following elements for your apparatus: Ammeter Low voltage power supply Connecting wires Labelled circuit diagram Draw a well-labelled circuit diagram to show how you would connect the apparatus listed above to each matchbox. (3 maarrow_forwardRAD127 Radiographic Equipment and Computers SI Units in Radiography Ch. 1 & 2 Instructions: Provide the units for each of the following in full and short forms 1. Mass - kg, 9 or (1b)) ・ 2. Energy, Work - W = FD,J 3. Air kerma -(Gya) 4. Absorbed Dose- 5. Effective Dose J/kg (94+) jlkg J/kg, Sv 6. Radioactivity - 5-1, Bq 7. Weight 8. Time 9. Force 10. Power B9 wt, wt-mg, N -(s) F= ma, N, OR 1b. (JIS), P= work It = Fdlt, Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill