Concept explainers
(a)
The maximum torque acting on the rotor.
(a)
Answer to Problem 29.50P
The maximum torque acting on the rotor is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the area of the coil is,
Here,
Substitute
Thus, the area of the coil is
The formula to calculate the torque is,
Here,
Substitute
Conclusion:
Therefore, the maximum torque acting on the rotor is
(b)
The peak power output of the motor.
(b)
Answer to Problem 29.50P
The peak power output of the motor is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the peak power is,
Here,
Substitute
Conclusion:
Therefore, the peak power output of the motor is
(c)
The amount of work performed by the magnetic field on the rotor in every full revolution.
(c)
Answer to Problem 29.50P
The amount of work performed by the magnetic field on the rotor in every full revolution is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the work done in half a revolution is,
Here,
The formula to calculate the magnetic moment is,
Here,
Substitute
Thus, the magnetic moment is
Substitute
Thus, the work done in half the revolution is
The formula to calculate the work done to complete a full revolution is,
Here,
Substitute
Conclusion:
Therefore, the amount of work performed by the magnetic field on the rotor in every full revolution is
(d)
The average power of the motor.
(d)
Answer to Problem 29.50P
The average power of the motor is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the average output power is,
Here,
Substitute
Conclusion:
Therefore, the average power of the motor is
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
- Two flat, circular coils, each with a radius R and wound with JV turns, ace mounted along the same axis so that they are parallel a distance d apart. What is the magnetic field at the midpoint of the common axis if a current I flows in the same direction through each coil?arrow_forwardWhen the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forward12.7 Check Your Understanding What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for an angle of (a) 85°? (b) 89°? The solenoid has 1000 mins in 50 cm with a current of 1.0 A flowing through the coilsarrow_forward
- A long-rigid wire lies along the x-axis and cairns a current of 2.5 A in the positive x-direction. Around the wire is the magnetic field B=2.0i+5.0x2j, With x in meters and B in millitesla. Calculate the magnetic force on the segment of wire between x=2.0m and x=4.0m .arrow_forwardA wire ismade into a circular shape of radius R and pivoted along a central support.The two ends of the sire are touching a banish that is connected to a &power source. The stricture is between the poles of a magnet such that we can assume there is a uniform magnetic field on the wire. In terms of a coordinate system with origin at the center ofthe ring, magneticfieldisBx=B0,By=Bz= 0. and the ring rotates about the z-axis. Find the torque on the ring siren it is not in the xz-plane.arrow_forwardAcircularcoiofwireofradius5.Ocmhas2Otums and carries a current of 2.0 A. The coil lies in a magnetic field of magnitude 0.50 T that is directed parallel to the plane of the coil. (a) What is the magnetic dipole moment of the coil? (b) What is the torque on the coil?arrow_forward
- A circular loop of radius R carries a current I. At what distance along the axis of the loop is the magnetic field one- half its value at the center of the loop?arrow_forwardCheck Your Understanding In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum energy of the dipole?arrow_forwardA circular loop of wire of area 10 cm2 carries a current of 25 A. At a particular instant, the loop lies in the xy-plane and is subjected to a magnetic field B=(2.0i+6.0j+8.0k)103T . As viewed from above the xy-plane, the current is circulating clockwise. (a) What is the magnetic dipole moment of the current loop? (b) At this instant, what is the magnetic torque on the loop?arrow_forward
- An electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardAssume the region to the right of a certain plane contains a uniform magnetic field of magnitude 1.00 mT and the field is zero in the region to the left of the plane as shown in Figure P22.71. An electron, originally traveling perpendicular to the boundary plane, passes into the region of the field. (a) Determine the time interval required for the electron to leave the field-filled region, noting that the electrons path is a semicircle. (b) Assuming the maximum depth of penetration into the field is 2.00 cm, find the kinetic energy of the electron.arrow_forwardA charge of 4.0C .s distributed uniformly around a thin ring of insulating material. The ring has a radius of 0.20 m and rotates at 2.0104 rev/min around die axis that passes through its center and is perpendicular to the plane of the ring. What is the magnetic field at the center of the ring?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill