
Concept explainers
(a)
The maximum torque acting on the rotor.
(a)

Answer to Problem 29.50P
The maximum torque acting on the rotor is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the area of the coil is,
Here,
Substitute
Thus, the area of the coil is
The formula to calculate the torque is,
Here,
Substitute
Conclusion:
Therefore, the maximum torque acting on the rotor is
(b)
The peak power output of the motor.
(b)

Answer to Problem 29.50P
The peak power output of the motor is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the peak power is,
Here,
Substitute
Conclusion:
Therefore, the peak power output of the motor is
(c)
The amount of work performed by the magnetic field on the rotor in every full revolution.
(c)

Answer to Problem 29.50P
The amount of work performed by the magnetic field on the rotor in every full revolution is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the work done in half a revolution is,
Here,
The formula to calculate the magnetic moment is,
Here,
Substitute
Thus, the magnetic moment is
Substitute
Thus, the work done in half the revolution is
The formula to calculate the work done to complete a full revolution is,
Here,
Substitute
Conclusion:
Therefore, the amount of work performed by the magnetic field on the rotor in every full revolution is
(d)
The average power of the motor.
(d)

Answer to Problem 29.50P
The average power of the motor is
Explanation of Solution
Given info: The number of turns in the rectangular coil is
The formula to calculate the average output power is,
Here,
Substitute
Conclusion:
Therefore, the average power of the motor is
Want to see more full solutions like this?
Chapter 29 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





