EBK COLLEGE PHYSICS, VOLUME 2
EBK COLLEGE PHYSICS, VOLUME 2
11th Edition
ISBN: 9781337514644
Author: Vuille
Publisher: CENGAGE LEARNING - CONSIGNMENT
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 26P

(a)

To determine

The number of C137 sample.

(a)

Expert Solution
Check Mark

Answer to Problem 26P

The number of C137 sample is 3.54×109 nuclei.

Explanation of Solution

Given info: Time elapsed is 1730 days. Half-life of C137 is 1.10×104days . Half-life of C134 is 734 days. The combined activity of both the samples is 11.0 Bq.

Formula to calculate the combined activity is,

R=(N0t1/2137)exp[(tt1/2137)ln2]+(N0t1/2134)exp[(tt1/2134)ln2]       (I)

  • t1/2137 is the half-life of C137 .
  • t1/2134 is the half-life of C134 .
  • N0 is the initial amount of sample.
  • t is the time elapsed.

From Equation (I), the initial amount of sample is,

N0=R(1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]       (II)

Formula to calculate the number of C137 sample is,

N=N0exp[(tt1/2137)ln2]       (III)

Substitute Equation (II) in (III).

N=Rexp[(tt1/2137)ln2](1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]

Substitute 11.0 Bq for R, 1.10×104days for t1/2137 , 734 days for t1/2134 and 1730 days for t in the above equation to get N.

N=(11.0Bq)exp[(1730days1.10×104days)ln2](11.10×104days)exp[(1730days1.10×104days)ln2]+(1734days)exp[(1730days734days)ln2]=3.54×109

Conclusion:

The number of C137 sample is 3.54×109 nuclei.

(b)

To determine

The number of C134 sample.

(b)

Expert Solution
Check Mark

Answer to Problem 26P

The number of C134 sample is 7.72×108 nuclei.

Explanation of Solution

Given info: Time elapsed is 1730 days. Half-life of C137 is 1.10×104days . Half-life of C134 is 734 days. The combined activity of both the samples is 11.0 Bq.

From Equation (II) of (a),

N0=R(1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]

Formula to calculate the number of C134 sample is,

N=N0exp[(tt1/2134)ln2]       (IV)

Substitute Equation (II) in (IV).

N=Rexp[(tt1/2134)ln2](1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]

Substitute 11.0 Bq for R, 1.10×104days for t1/2137 , 734 days for t1/2134 and 1730 days for t in the above equation to get N.

N=(11.0Bq)exp[(1730days734days)ln2](11.10×104days)exp[(1730days1.10×104days)ln2]+(1734days)exp[(1730days734days)ln2]=7.72×108

Conclusion:

The number of C134 sample is 7.72×108 nuclei.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 29 Solutions

EBK COLLEGE PHYSICS, VOLUME 2

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning