CONCEPTUAL PHYSICS LL FD
CONCEPTUAL PHYSICS LL FD
12th Edition
ISBN: 9780135745816
Author: Hewitt
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 1RCQ
To determine

Huygens’s hypothesis of every point on a wavefront.

Expert Solution & Answer
Check Mark

Answer to Problem 1RCQ

Solution:

Every point on a wavefront behaves as a secondary wavelet according to Huygens’s hypothesis.

Explanation of Solution

Huygens gave a principle through which we can imagine or geometrically construct the position of a wavefront at any instant. His hypothesis is

" Every point of wavefront behaves like a secondary wavelet which moves with the velocity of light in all directions ".
The meaning of Secondary wavelet is that every point on the wavefront behaves as a fresh source of the new disturbance. Let AB be a primary wavefront, then according to Huygens’s principle, every point on this wavefront behaves like a secondary wavelet. To determine the position of the wavefront after some time t, we take a help from geometry. The distance traveled by light in t seconds = ct. Then we make spheres of radius ct by taking every point on a primary wavefront as centers of those spheres. All those surfaces of spheres represent the position of secondary wavelets at time t. Drawing a surface A'B' touching those surfaces of spheres. It will be the position wavefront after time t.

CONCEPTUAL PHYSICS LL FD, Chapter 29, Problem 1RCQ

Huygens Hypothesis

Conclusion:

We saw that Huygens imagined all point on (primary) wavefront as a secondary wavelet which also led us to know that wavefront travel parallels to itself.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.
A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.
A rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case).  Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all steps
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON