EBK COLLEGE PHYSICS
EBK COLLEGE PHYSICS
11th Edition
ISBN: 8220103600385
Author: Vuille
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 19P

(a)

To determine

The half-life in seconds.

(a)

Expert Solution
Check Mark

Answer to Problem 19P

The half-life is 6.95×105s .

Explanation of Solution

Given info: Half-life of I131 is 8.04 days.

1day=(24)(3600s)

The half life is,

t1/2=(8.04days)(24)(3600s)1day=6.95×105s

Conclusion:

The half-life is 6.95×105s .

(b)

To determine

The decay constant.

(b)

Expert Solution
Check Mark

Answer to Problem 19P

The decay constant is 9.97×107s1 .

Explanation of Solution

Given info: Half-life of I131 is 6.95×105s .

Formula to calculate the decay constant is,

λ=ln2t1/2

Substitute 6.95×105s for t1/2 in the above equation to get λ .

λ=ln26.95×105s=9.97×107s1

Conclusion:

The decay constant is 9.97×107s1 .

(c)

To determine

The activity in SI unit.

(c)

Expert Solution
Check Mark

Answer to Problem 19P

The activity in SI unit is 1.9×104Bq .

Explanation of Solution

Given info: Activity of I131 is 0.500μCi .

1Ci=3.7×1010Bq

The activity in SI unit is,

R=(0.500×106Ci)(3.7×1010Bq1Ci)=1.9×104Bq

Conclusion:

The activity in SI unit is 1.9×104Bq .

(d)

To determine

The number of I131 .

(d)

Expert Solution
Check Mark

Answer to Problem 19P

The number of I131 is 1.9×1010 .

Explanation of Solution

Given info: Activity of I131 is 0.500μCi .

Formula to calculate the number of I131 is,

N=Rλ

Substitute 0.500μCi for R and 9.97×107s1 for λ in the above equation to get R.

N=0.500μCi9.97×107s1=(0.500×106Ci)(3.7×1010Bq1Ci)9.97×107s1=1.9×1010

Conclusion:

The number of I131 is 1.9×1010 .

(e)

To determine

The number of half-lives completed and activity.

(e)

Expert Solution
Check Mark

Answer to Problem 19P

The number of half-lives completed is 5.

The activity is 0.200mCi .

Explanation of Solution

Section 1:

To determine: The number of half-lives completed.

Answer: The number of half-lives completed is 5.

Explanation:

Given info: Activity ( R0 ) of I131 at a given time is 6.40mCi . Time elapsed is 40.2 days. Half-life of I131 is 8.04 days.

Formula to calculate the number of half-lives is,

n=tt1/2

Substitute 40.2 days for t and 8.04 days for t1/2 in the above equation to get n.

n=40.2days8.04days=5

The number of half-lives completed is 5.

Section 2:

To determine: The activity.

Answer: The activity is 0.200mCi .

Explanation:

Given info: Activity ( R0 ) of I131 at a given time is 6.40mCi . Time elapsed is 40.2 days. Half-life of I131 is 8.04 days.

Formula to calculate the activity is,

R=R02n

Substitute 6.40mCi for R0 and 5 for n in the above equation to get R.

R=6.40mCi25=0.200mCi

The activity is 0.200mCi .

Conclusion:

The number of half-lives completed is 5.

The activity is 0.200mCi

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…

Chapter 29 Solutions

EBK COLLEGE PHYSICS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College