Bundle: College Physics, Volume 1, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Single-Term
Bundle: College Physics, Volume 1, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Single-Term
11th Edition
ISBN: 9781337741583
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 12P

(a)

To determine

The binding energy per nucleon of H12 .

(a)

Expert Solution
Check Mark

Answer to Problem 12P

The binding energy per nucleon of H12 is 1.11MeV/nucleon .

Explanation of Solution

Formula to calculate the binding energy per nucleon is,

BEA=[ZmpNmnm(H12)]c2A

  • mp is the mass of the proton.
  • mn is the mass of the neutron.
  • Z is the atomic number.
  • N is the neutron number.
  • m(H12) is the mass of H12 .
  • c is the speed of light.
  • A is the mass number.

Substitute 1 for Z, 1 for N,1.008625 u for mn , 1.007825 u for mp , 2.014102 u for m(H12) , 931.5 MeV/u for c2 and 2 for A in the above equation to find BE/A .

BEA=[(1)(1.007825u)(1)(1.008625u)(2.014102u)](931.5MeV/u)2=1.11MeV/nucleon

Conclusion:

The binding energy per nucleon of M1224g is 1.11MeV/nucleon .

(b)

To determine

The binding energy per nucleon of H24e .

(b)

Expert Solution
Check Mark

Answer to Problem 12P

The binding energy per nucleon of H24e is 7.07MeV/nucleon .

Explanation of Solution

Formula to calculate the binding energy per nucleon is,

BEA=[ZmpNmnm(H24e)]c2A

  • m(H24e) is the mass of H24e .

Substitute 2 for Z, 2 for N,1.008625 u for mn , 1.007825 u for mp , 4.002603 u for m(H24e) , 931.5 MeV/u for c2 and 4 for A in the above equation to find BE/A .

BEA=[(2)(1.007825u)(2)(1.008625u)(4.002603u)](931.5MeV/u)4=7.07MeV/nucleon

Conclusion:

The binding energy per nucleon of R3785b is 7.07MeV/nucleon .

(c)

To determine

The binding energy per nucleon of F2656e .

(c)

Expert Solution
Check Mark

Answer to Problem 12P

The binding energy per nucleon of F2656e is 8.79MeV/nucleon .

Explanation of Solution

Formula to calculate the binding energy per nucleon is,

BEA=[ZmpNmnm(F2656e)]c2A

  • m(F2656e) is the mass of F2656e .

Substitute 26 for Z, 30 for N,1.008625 u for mn , 1.007825 u for mp , 55.934942 u for m(F2656e) , 931.5 MeV/u for c2 and 56 for A in the above equation to find BE/A .

BEA=[(26)(1.007825u)(30)(1.008625u)(55.934942u)](931.5MeV/u)56=8.79MeV/nucleon

Conclusion:

The binding energy per nucleon of R3785b is 8.79MeV/nucleon .

(d)

To determine

The binding energy per nucleon of U92238 .

(d)

Expert Solution
Check Mark

Answer to Problem 12P

The binding energy per nucleon of U92238 is 7.57MeV/nucleon .

Explanation of Solution

Formula to calculate the binding energy per nucleon is,

BEA=[ZmpNmnm(U92238)]c2A

  • m(U92238) is the mass of U92238 .

Substitute 92 for Z, 146 for N,1.008625 u for mn , 1.007825 u for mp , 238.050783 u for m(U92238) , 931.5 MeV/u for c2 and 238 for A in the above equation.

BEA=[(92)(1.007825u)(146)(1.008625u)(238.050783u)](931.5MeV/u)238=7.57MeV/nucleon

Conclusion:

The binding energy per nucleon of U92238 is 7.57MeV/nucleon

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Phys 22

Chapter 29 Solutions

Bundle: College Physics, Volume 1, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Single-Term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning