PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28.2, Problem 28.2PP
To determine
The change in interference pattern as the accelerating potential is increased.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
After learning about de Broglie's hypothesis that material particles of momentum p move as waves with
wavelength = h/p, an 80.0-kg student has grown concerned about being diffracted when passing through a
75.0-cmwide doorway. Assume significant diffraction occurs when the width of the diffraction aperture is
less that 10.0 times the wavelength of the wave being diffracted. (a) Determine the maximum speed at
which the student can pass through the doorway if he is to be significantly diffracted. (b) With that speed,
over what time interval does the student pass through the doorway if it is in a wall 15.0 cm thick? State how
your answer compares with the age of the Universe, which is about 4 x 10¹7 s.
A CD-ROM is used instead of a crystal in an electron diffraction experiment. The surface of the CD-ROM has tracks of tiny pits with a uniform spacing of 1.60 mm. (a) If the speed of the electrons is 1.26 X 104 m/s, at which values of q will the m = 1 and m = 2 intensity maxima appear? (b) The scattered electrons in these maxima strike at normal incidence a piece of photographic film that is 50.0 cm from the CD-ROM. What is the spacing on the film between these maxima?
X rays scattered from a crystal have a fi rst-order diffraction peak at θ =12.5°. At what angle will the second- and third-order peaks appear?
Chapter 28 Solutions
PHYSICS
Ch. 28.2 - Prob. 28.2CPCh. 28.2 - Prob. 28.1PPCh. 28.2 - Prob. 28.2PPCh. 28.4 - Prob. 28.4CPCh. 28.4 - Prob. 28.3PPCh. 28.6 - Prob. 28.6CPCh. 28.7 - Prob. 28.4PPCh. 28.9 - Prob. 28.5PPCh. 28.10 - Prob. 28.6PPCh. 28 - Prob. 1CQ
Ch. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 1MCQCh. 28 - Prob. 2MCQCh. 28 - Prob. 3MCQCh. 28 - Prob. 4MCQCh. 28 - Prob. 5MCQCh. 28 - Prob. 6MCQCh. 28 - Prob. 7MCQCh. 28 - Prob. 8MCQCh. 28 - Prob. 9MCQCh. 28 - Prob. 10MCQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 15PCh. 28 - Prob. 14PCh. 28 - Prob. 17PCh. 28 - Prob. 16PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 23PCh. 28 - Prob. 22PCh. 28 - Prob. 25PCh. 28 - Prob. 24PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 32PCh. 28 - Prob. 31PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 39PCh. 28 - Prob. 41PCh. 28 - Prob. 40PCh. 28 - Prob. 38PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 65PCh. 28 - Prob. 64PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - Prob. 79PCh. 28 - Prob. 78PCh. 28 - Prob. 80PCh. 28 - Prob. 81PCh. 28 - Prob. 82PCh. 28 - Prob. 83PCh. 28 - Prob. 84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 16 For three experiments, Fig. 38-25 gives the transmission coefficient T for electron tunneling through a po- tential barrier, plotted versus barrier thickness L. The de Broglie wave- lengths of the electrons are identical in the three experiments. The only difference in the physical setups is the barrier heights U. Rank the three experiments according to U, greatest first. T: Figure 38-25 Question 16.arrow_forwardTo study crystal diffraction we need wavelengths of about 0.5 x 10-10 m. What would be the corresponding kinetic energies in eV of (a) a photon, (b) an electron, and (c) a neutron?arrow_forwardA single slit receives light with wavelength 534 nm. The full central maximum on a screen behind the slit draws view from -90° to +90°. The light is now replaced by a beam of electrons, each of which has a kinetic energy ehb of 320 eV. at what angle will the first minimum of the diffraction pattern occur?arrow_forward
- Electrons are ejected from a metallic surface with speeds ranging up to 4.60 x 105 m/s when light with a wavelength of 625 nm is used. (a) What is the work function of the surface? (b) What is the cutoff frequency for this surface?arrow_forwardanswer for carrow_forwardUsing the Broglie"s relationship, the velocity of an electron with a (mass e = 9.11×10-31 kg) having a wavelength of 700 nm is?arrow_forward
- The electrons in a beam are moving at 18 m/s. (melectron = 9.11 × 10-31 kg, h = 6.626 × 10-34 J ∙ s) (a) What is its de Broglie wavelength these electrons? (b) If the electron beam falls normally on a diffraction grating, what would have to be the spacing between slits in the grating to give a first-order maximum at an angle of 30° with the normal to the grating?arrow_forwardsimple cubic crystal is cut so that the rows of atoms on its surface are separated by adistance of 0.352 nm. A beam of electrons is accelerated through a potential difference of 175 Vand is incident on the surface. If all diffraction orders are possible, at what angles, relative to thecrystal surface, would the diffracted beams be observed? me = 9.11 ×10 -31 kg.arrow_forwardFresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).arrow_forward
- Why is the following situation impossible? After learning about de Broglie’s hypothesis that material particles of momentum p move as waves with wavelength λ = h/p, an 80-kg student has grown concerned about being diffracted when passing through a doorway of width w = 75 cm. Assume significant diffraction occurs when the width of the diffraction aperture is less than ten times the wavelength of the wave being diffracted. Together with his classmates, the student performs precision experiments and finds that he does indeed experience measurable diffraction.arrow_forwardThe resolving power of a microscope depends on the wavelength used. If you wanted to “see” an atom, a wavelength of approximately 1.00 × 10-11 m would be required. (a) If electrons are used (in an electron microscope), what minimum kinetic energy is required for the electrons? (b) What If? If photons are used, what minimum photon energy is needed to obtain the required resolution?arrow_forward(A) Calculate the de Broglie wavelength for an electron (me = 9.11 × 10-31 kg) moving at 1.00 × 107 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning