EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 7PCE
If the loudspeakers in Problem 6 are 180° out of phase, determine whether a 185-Hz tone heard at location B is a maximum or a minimum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
SWI-1 Two speakers are in phase and are both playing a tone with a frequency of 250.0 Hz. A listener
starts at the location of speaker 2 and moves along the x axis. At what values of x are the first 3 locations
where he will hear an intensity minimum? Hint: these are the n = 0, 1, 2 points of destructive interference.
Take the speed of sound in air to be 343 m/s.
speaker 1
(0, 4.50m)
speaker 2
(0, 0)
X
The acoustical system shown in the figure below is driven by a speaker emitting sound of frequency 730 Hz. (Use v = 343 m/s.)
If constructive interference occurs at a particular instant, by what minimum amount should the path length in the upper U-shaped tube be increased so that destructive interference occurs instead?m
(b) What minimum increase in the original length of the upper tube will again result in constructive interference?
Imagine you are in an open field where two loudspeakers are set up and connected to the same amplifier so that they emit sound waves in phase at 688 HzHz. Take the speed of sound in air to be 344 m/sm/s. What is the shortest distance d you need to walk forward to be at a point where you cannot hear the speakers? The forward direction is defined as being perpendicular to a line joining the two speakers and you start walking from the line that joins the two speakers.
Chapter 28 Solutions
EBK PHYSICS
Ch. 28.1 - Two beams of light that have the same phase are...Ch. 28.2 - If the wavelength in a two-slit experiment is...Ch. 28.3 - For each of the cases shown in Figure 28-22, state...Ch. 28.4 - If the wavelength of light passing through a...Ch. 28.5 - If you view the world with blue light, is your...Ch. 28.6 - Suppose a diffraction grating has slits separated...Ch. 28 - Prob. 1CQCh. 28 - What happens to the two-slit interference pattern...Ch. 28 - If a radio station broadcasts its signal through...Ch. 28 - How would you expect the interference pattern of a...
Ch. 28 - Describe the changes that would be observed in the...Ch. 28 - Two identical sheets of glass are coated with...Ch. 28 - A cats eye has a pupil that is elongated in the...Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Two sources emit waves that are coherent, in...Ch. 28 - In an experiment to demonstrate interference, you...Ch. 28 - A theme park creates a new kind of water wave pool...Ch. 28 - Two sources emit waves that are in phase with each...Ch. 28 - A person driving at 17 m/s crosses the line...Ch. 28 - Two students in a dorm room listen to a pure tone...Ch. 28 - If the loudspeakers in Problem 6 are 180 out of...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - Predict/Calculate Radio waves of frequency 1.427...Ch. 28 - Moe, Larry, and Curly stand in a line with a...Ch. 28 - Predict/Calculate In Figure 28-43 the two speakers...Ch. 28 - Consider a two-slit interference pattern, with...Ch. 28 - (a) Does the path-length difference l increase or...Ch. 28 - Predict/Explain A two-slit experiment with red...Ch. 28 - Laser light with a wavelength = 690 nm...Ch. 28 - Monochromatic light passes through two slits...Ch. 28 - In Youngs two-slit experiment, the first dark...Ch. 28 - Predic/Calculate A two-slit experiment with slits...Ch. 28 - A two-slit pattern is viewed on a screen 1.00 m...Ch. 28 - Light from a He-Ne laser ( = 632.8 nm) strikes a...Ch. 28 - For a science fair demonstration you would like to...Ch. 28 - Light with a wavelength of 576 nm passes through...Ch. 28 - Predict/Calculate Suppose the inference pattern...Ch. 28 - A physics instructor wants to produce a...Ch. 28 - Predict/Calculate When green light ( = 505 nm)...Ch. 28 - Predict/Calculate The interference pattern shown...Ch. 28 - Figure 28-46 shows four different cases where...Ch. 28 - The oil film floating on water in the accompanying...Ch. 28 - A soap bubble with walls 418 nm thick floats in...Ch. 28 - A soap film (n = 1.33) is 825 nm thick. White...Ch. 28 - White light is incident on a soap film (n = 1.30)...Ch. 28 - A 742-nm-thick soap film (nfilm = 1.33) rests on a...Ch. 28 - An oil film (n = 1.46) floats on a water puddle....Ch. 28 - A radio broadcast antenna is 36.00 km from your...Ch. 28 - Predict/Calculate Newton s Rings Monochromatic...Ch. 28 - Light is incident from above on two plates of...Ch. 28 - Submarine Saver A naval engineer is testing an...Ch. 28 - Predict/Calculate A thin layer of magnesium...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - White light is incident normally on a thin soap...Ch. 28 - Two glass plates are separated by fine wires with...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - What width single slit will produce first-order...Ch. 28 - Diffraction also occurs with sound waves Consider...Ch. 28 - Green light ( = 546 nm) strikes a single slit at...Ch. 28 - Light with a wavelength of 696 nm passes through a...Ch. 28 - Predict/Calculate A single slit is illuminated...Ch. 28 - How many dark fringes will be produced on either...Ch. 28 - Predict/Calculate The diffraction pattern shown in...Ch. 28 - A screen is placed 1.50 m behind a single slit....Ch. 28 - Predict/Explain (a) In principle, do your eyes...Ch. 28 - Two point sources of light are separated by 5.5...Ch. 28 - A spy camera is said to be able to read the...Ch. 28 - Splitting Binary Stars As seen from Earth, the red...Ch. 28 - Very Large Telescope Interferometer A series of...Ch. 28 - Find the minimum aperture diameter of a camera...Ch. 28 - The Resolution of Hubble The Hubble Space...Ch. 28 - A lens that is optically perfect is still limited...Ch. 28 - Early cameras were little more than a box with a...Ch. 28 - A grating has 797 lines per centimeter Find the...Ch. 28 - Prob. 62PCECh. 28 - A diffraction groting has 2500 lines/cm What is...Ch. 28 - The yellow light from a helium discharge tube has...Ch. 28 - A diffraction grating with 365 lines/mm is 1 25 m...Ch. 28 - Protein Structure X-rays with a wavelenglh of 0...Ch. 28 - White light strikes a grating with 7600...Ch. 28 - White light strikes a diffraction grating...Ch. 28 - CD Reflection The rows of bumps on a CD form lines...Ch. 28 - A light source emits two district wavelengths [1 =...Ch. 28 - A laser emits two wavelengths ( = 420 nm; 2 = 630...Ch. 28 - Predict/Calculate When blue light with a...Ch. 28 - Monochromatic light strikes a diffracton grating...Ch. 28 - A diffraction grating with a slit separation d is...Ch. 28 - CE Predict/Explain (a) If a thin liquid film...Ch. 28 - CE If the index of refraction of an eye could be...Ch. 28 - When reading the printout from a laser printer,...Ch. 28 - The headlights of a pickup truck are 1 36 m apart...Ch. 28 - Antireflection Coating A glass lens (nglass = 1...Ch. 28 - A thin film of oil (n = 1.30) floats on water (n =...Ch. 28 - The yellow light of sodium, with wavelengths of...Ch. 28 - Predict/Calculate A thin soap film (n = 1.33)...Ch. 28 - Predict/Calculate A thin film of oil (n = 1.40)...Ch. 28 - PredictfCalculate Sodium light, with a wavelength...Ch. 28 - BIO The Largest Eye The colossal squid...Ch. 28 - Product/Calculate Figure 28-49 shows a single-slit...Ch. 28 - BIO Entoptic Halos Images produced by structures...Ch. 28 - White light is incident on a soap film (n = 1.33,...Ch. 28 - Predict/Calculate A system like that shown in...Ch. 28 - A curved piece of glass with a radius of curvature...Ch. 28 - BIO The Resolution of the Eye The resolution of...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Predict/Calculate Referring to Example 28-3...Ch. 28 - Predict/Calculate Referring to Example 28-3 The...Ch. 28 - Predict/Calculate Referring to Example 28-11 The...Ch. 28 - Predictf/Calculate Referring to Example 28-11 The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is accelerated microbial corrosion of iron metal thought to require a direct interaction between the sulfat...
Brock Biology of Microorganisms (15th Edition)
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A point on the third nodal line from the center of an interference pattern is 40.1 cm from one source and 31.8 cm from the other. The sources are 10.4 cm apart and vibrate in phase at 14.0 Hz. Calculate the wavelength of the waves, in cm.arrow_forwardQ4, IT IS NOT 59 cm ........it is 50 cmarrow_forwardTwo loudspeakers are placed above and below each other, as in the figure, and driven by the same spice at a frequency of 5.60* 10^2 Hz. An observer is in front of the speakers at point O, at the same distance from each speaker. What max vertical distance upward should the top speaker be moved to create destructive interference at point O? ( assume spread of sound is 343m/s)arrow_forward
- Speaker I is at x =0 and speaker a is to the right and facing it at x=3m. The Speakers are connected to the Same amplifiér, which plays a cantinuous tone of unkenown frequency. If the first point of destructive interference is o.2m to the left of the center, find the frequency in Hz. The Speed 0f sound is 345 m/s.arrow_forwardB3arrow_forward3arrow_forward
- Speaker 1 is at x = 0 and speaker 2 is to the right and facing it at x = 5 m. The speakers are connected to the same amplifier, which plays a continuous tone of frequency 353 Hz. Find the x-coordinate in meters of the first point of destructive interference that is left of center, if the temperature in the room is 21 C.arrow_forwardTwo powerful speakers, separated by 15.00 m, stand on thefloor in front of the stage in a large amphitheater. An aisle perpendicularto the stage is directly in front of one of the speakers and extends50.00 m to an exit door at the back of the amphitheater. (a) If the speakersproduce in-phase, coherent 440 Hz tones, at how many points along theaisle is the sound minimal? (b) What is the distance between the farthestsuch point and the door at the back of the aisle? (c) Suppose the coherentsound emitted from both speakers is a linear superposition of a 440 Hztone and another tone with frequency f. What is the smallest value of fso that minimal sound is heard at any point where the 440 Hz sound isminimal? (d) At how many additional points in the aisle is the 440 Hztone present but the second tone is minimal? (e) What is the distancefrom the closest of these points to the speaker at the front of the aisle?arrow_forwardAsap plzzzarrow_forward
- The two speakers are placed 39.0 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 2.01 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s. Enter the magnitude of the angle only.) maximum intensities: (List smallest magnitude angle first.) ?1max = ?2max = ?3max = minimum intensities: (List smallest magnitude angle first.) minimum intensities: (List smallest magnitude angle first.) ?1min = ?2min =arrow_forwardThe two speakers are placed 40.0 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 1.98 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s. Enter the magnitude of the angle only.)maximum intensities: (List smallest magnitude angle first.)?1max = ?2max = ?3max = minimum intensities: (List smallest magnitude angle first.)?1min = ?2min =arrow_forwardanswer fast I will give upvotes \What acoustic frequency is required of a plane acoustic wave in an acousto-optic cell so that a beam from a He-Ne laser is deflected by ? Consider the case of (a) flint glass for which the sound velocity is 3km/s and n=1.95 and (b) sapphire crystal with the sound velocity of 11km/s and n=1.76.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY